

Support vector machine classification of strong gravitational lenses

Philippa Hartley

Jodrell Bank Centre for Astrophysics

+ Rémi Flamary, Neal Jackson, Amit Tagore, Ben Metcalfe

Overview

• Lensing overview

Lensing history Types of gravitational lensing

Science from strong lenses Current applications of lenses Euclid sky survey: more lenses

• An automatic lens finder

Support vector machine approach

Application of the lens finder

Lens finding challenge Kilo Degree Survey

The future....

1704: Newton suspects gravitational deflection of light

"Do not bodies act upon light at a distance, and by their action bend its Rays; and is not this action strongest at the least distance ?", *Opticks*

1915: General relativity predicts twice the deflection

The University of Manchester

1919: Lensing effect observed by Arthur Eddington **GR** confirmed

Solar eclipse of 1919, shifted star locations marked

Lensing formalism

 $\mathcal{A}(\theta) = \frac{\partial \beta}{\partial \theta}$

Lensing formalism

$$\mathcal{A}(\theta) = \frac{\partial \beta}{\partial \theta} = \begin{pmatrix} 1 - \kappa - \gamma_1 & \gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

Lensing formalism

$$\mathcal{A}(\theta) = \frac{\partial \beta}{\partial \theta} = \begin{pmatrix} 1 - \kappa - \gamma_1 & \gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}; \text{ Magnification } \mu = \frac{1}{\det \mathcal{A}}$$

Lensing geometry

Lensing formalism: Fermat surface

Fermat's principle: Light follows the path of least time

Combine a **geometrical delay** with a **gravitational delay**

Images form at **stationary points** in surface

Weak lensing

A statistical measurement of cosmic shear

Distant galaxy Large scale structure View from Earth

Weak lensing

8.2 m Subaru telescope on Mauna Kea, Hawaii

Two galaxy clusters 60 million light years apart

Shapes of more than 40 000 background galaxies measured

Mass reconstructed to find a dark matter filament connecting the clusters

Microlensing

Compact projected mass exceeds critical density

Microlensing

The brightening of a background star due to the lensing effect of an invisible red dwarf

Credit: NASA/ESA Hubble, D. Bennett

Strong lensing

Extended projected lens mass exceeds critical density

Strong lensing configurations

Credit: NASA/ESA Hubble

Science from lenses: dark matter structure

• Sub-galactic structure gives rise to image anomalies

Millenium simulation of dark matter haloes

Dark matter power spectrum

Science from lenses: the Hubble parameter

Measure **time delay** between images Measure and model lensing galaxy Infer time delay distance Convert into cosmological parameters

Science from lenses: cosmic telescopes

A quasar jet is lensed into four separate images

The lensing galaxy is invisible at radio wavelength

Lensing results in x50 magnification of this quasar

We can measure the temperature and morphology of this otherwise unseen object

Hartley et al., in prep. 2017

Science from lenses: cosmic telescopes

Lensing allows us to study galaxy evolution by looking at mass structure over cosmic time

A. Tagore et al. 2017

Lensing allows us to study galaxy evolution by looking at mass structure over cosmic time

A. Tagore et al. 2017

Lensing allows us to study galaxy evolution by looking at mass structure over cosmic time

A. Tagore et al. 2017

NASA, ESA, R. Gavazzi and T. Treu (University of California, Santa Barbara), and the SLACS Team STScI-PRC08-04

Double source plane lenses

Euclid mission: Strong Lens Legacy Science Group

- white paper in prep.

Current sample ~300 strong lenses Expectations ~10 000 000 000 sources ~300 000 galaxy-galaxy lenses ~3000 cluster lenses

Where are they?

Support vector machines

$$\{\mathbf{x}_{i}, y_{i}\}, \quad i = 1, \cdots, l, \ y_{i} \in \{-1, 1\}, \ \mathbf{x}_{i} \in \mathbf{R}^{d}$$
$$\mathbf{x}_{i} \cdot \mathbf{w} + b \geq +1 \quad \text{for } y_{i} = +1$$
$$\mathbf{x}_{i} \cdot \mathbf{w} + b \leq -1 \quad \text{for } y_{i} = -\frac{1}{k}$$
$$L_{P} \equiv \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{l} \alpha_{i} y_{i} (\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{i=1}^{l} \alpha_{i}$$
$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0.$$
$$L_{D} = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$

Vapnik et al. 1979, Cortes & Vapnik 1995

- Find optimal hyperplane separating two classes of data
- Optimisation depends only on dot products of support vectors, found on the edge of each class

Support vector machines

$$\{\mathbf{x}_{i}, y_{i}\}, \quad i = 1, \cdots, l, \quad y_{i} \in \{-1, 1\}, \quad \mathbf{x}_{i} \in \mathbf{R}^{d}$$
$$\mathbf{x}_{i} \cdot \mathbf{w} + b \geq +1 \quad \text{for } y_{i} = +1$$
$$\mathbf{x}_{i} \cdot \mathbf{w} + b \leq -1 \quad \text{for } y_{i} = -\frac{1}{k}$$
$$L_{P} \equiv \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{l} \alpha_{i} y_{i} (\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{i=1}^{l} \alpha_{i}$$
$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0.$$
$$L_{D} = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i=i} \alpha_{i} \alpha_{j} y_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$

Vapnik et al. 1979, Cortes & Vapnik 1995

• Function is convex: every local solution is a global one – no local minima

Support vector machines

Boser et al. 1992

- Coordinate transformation can deal with non-linear separation \bullet
- Unknown kernel function replaces dot product

Feature extraction

100 * 100 pixels = **10 000** features

Feature extraction

Apply Gabor filters: model the simple cells of the mammillian visual cortex (Marcelja 1980)

Feature extraction

Mean	$\mu_1(x_1,\ldots,x_N) = \frac{1}{N} \sum_{j=1}^N x_j$
Variance	$\mu_2(x_1,\ldots,x_N) = \frac{1}{N-1} \sum_{j=1}^N (x_j - \mu_1)^2$
Skew	$\mu_3(x_1,,x_N) = \frac{1}{N} \sum_{j=1}^N \left[\frac{x_j - \mu_1}{\mu_2} \right]^3$
Kurtosis	$\mu_4(x_1,\ldots,x_N) = \left\{ \frac{1}{N} \sum_{j=1}^N \left[\frac{x_j - \mu_1}{\mu_2} \right]^4 \right\}$
Local energy	$E_{\mathrm{s}}(x_1,\ldots,x_N)=\sum_{j=1}^N x_j^2$

Hartley et al. 2017 MNRAS

4 bands * 9 kernel frequencies * 7 kernel rotations * 5 moments = **1260** features

Feature selection

Recursive feature elimination

Simple, but can be unstable

Principle component analysis

Feature selection

40 0 30 20 X 10 0 -10-20-140-130-120-110-100-90 -80 -60-70 X_0

Recursive feature elimination

Simple, but can be unstable

t-distributed stochastic neighbour embedding (t-SNE)

Like principle component analysis but able to respresent non-linear relationships

Feature selection

Stability selection:

Features are subsampled and perfomance evaluated

Training score

1.0

Model tuning

Regularisation parameters

Results

Results: Platt scaling

Lens Finding Challenge

Introduction

Finding strong gravitational lenses in the current imaging surveys is difficult. Future surveys will have orders of magnitude more data and more lenses to find. It will become impossible for a single human being to find them by inspection. In addition, to properly interpret the science coming out of strong lens samples it is necessary to accurately quantify the detection efficiency and bias of People

Metcalf et al., in preparation 2017

Machine vs human

100 000 simulated images, 48 hours

The University of Manchester

Lens Finding Challenge

Lens Finding Challenge

The University of Manchester

Lens Finding Challenge

Credit: Schaefer et al. 2017

Lens Finding Challenge: results

Name	type	AUROC	TPR_{0}	TPR_{10}	short description
CMU-DeepLens-ResNet-ground3	Ground-Based	0.98	0.09	0.45	CNN
CMU-DeepLens-Resnet-Voting	Ground-Based	0.98	0.02	0.10	CNN
LASTRO EPFL	Ground-Based	0.97	0.07	0.11	CNN
CAS Swinburne Melb	Ground-Based	0.96	0.02	0.08	CNN
AstrOmatic	Ground-Based	0.96	0.00	0.01	CNN
Manchester SVM	Ground-Based	0.93	0.22	0.35	SVM / Gabor
Manchester-NA2	Ground-Based	0.89	0.00	0.01	Human Inspection
ALL-star	Ground-Based	0.84	0.01	0.02	edges/gradiants and Logistic Reg.
CAST	Ground-Based	0.83	0.00	0.00	CNN / SVM
YattaLensLite	Ground-Based	0.82	0.00	0.00	SExtractor

Metcalf et al., in preparation 2017

Lens Finding Challenge: results

Name	type	AUROC	$\mathrm{TPR}_{\mathrm{0}}$	TPR_{10}	short description
Manchester SVM	Ground-Based	0.93	0.22	0.35	SVM / Gabor
CMU-DeepLens-ResNet-ground3	Ground-Based	0.98	0.09	0.45	CNN
LASTRO EPFL	Ground-Based	0.97	0.07	0.11	CNN
CMU-DeepLens-Resnet-Voting	Ground-Based	0.98	0.02	0.10	CNN
CAS Swinburne Melb	Ground-Based	0.96	0.02	0.08	CNN
ALL-star	Ground-Based	0.84	0.01	0.02	edges/gradiants and Logistic Reg.
Manchester-NA2	Ground-Based	0.89	0.00	0.01	Human Inspection
YattaLensLite	Ground-Based	0.82	0.00	0.00	SExtractor
CAST	Ground-Based	0.83	0.00	0.00	CNN / SVM
AstrOmatic	Ground-Based	0.96	0.00	0.01	CNN

Metcalf et al., in preparation 2017

Real life data: Kilo Degree Survey

Domain adaptation

Real data: Kilo Degree Survey

1 000 000 real images after pre-selection

Real life data: Kilo Degree Survey

Hartley et al. 2017 MNRAS

Conclusions

- More lenses needed in order to exploit full scientific potential
- Machines now surpass humans in finding lenses
- Surprising strength of SVMs when false postives are a problem
- Domain adaption: limited by quality of training data
- The best architecture might be: CNN + SVM

P. Hartley, R. Flamary, N. Jackson, A. S. Tagore, R. B. Metcalfe, MNRAS 471 (3): 3378-3397, 2017

Credit: NASA/ESA

Thank you! —