Reading physics from stellar spectra

700

Maria Bergemann Max Planck Institute for Astronomy

Reading physics from stellar spectra

700

Maria Bergemann Max Planck Institute for Astronomy

The main goal

develop physical models to interpret stellar spectra

-						-,		,			
W	Julian	Mananat	^N WW ^{2NM} W	~`\M\M\	laha n ^{ora} h) milik	1 Mary	MA /#	W WW	himit	
				, ¶ ¶	ľ	ľ	V	'Υ			
				. 1	Y		ļ	ļ			
										ļ	
Ē.											

The main goal

new observational data

develop physical models to interpret stellar spectra

Theory

Data

╧ ╆╢ѡ҇҇ӏӏӷӣѼӄ҂ҹӍҝ ^{ѧҵѵӄ} ҴѴ <mark></mark> Ѩӎ ^{ӷҲѵҡ} ҋ _Ѭ ѵѵҴฦ	ኒስቴ ብላቂ ለ ^ግ ትን ያገባ	ALL MANAR	WWWWWW MAN A
	14"Y Y	יוין אייי	· · · · · · · · · · · · · · · · · · ·
-	, î î î	l l	
	ľ	' '	-

The main goal

fundamental parameters & chemical composition of stars

- Galactic stellar populations
- Cosmic origins of the periodic table

new observational data

develop physical models to interpret stellar spectra

Challenge

Data

- 	16 04 · · · · · · · · · · · · · · · · · ·	- 0.44 MPL (1/2) = 5		
alla lu l'avala, se cuada se da	`\{`\;{`\;{`\;{`\;{`\;{`\;	LA AMM Toke AL	\ / ^{##} #11/	Ē
	ւ ի ի ի ի	የ ነ በ	V V V	
	rų ų	1	1 1 1	
-		, ,	'	-
			Į Į	

Understanding stellar spectra

fundamental parameters and chemical composition of stars underpin most areas in astrophysics

Physics of stars and exoplanets

Population statistics remnants, mergers

First stars and BBN

Evolution of the Milky Way and other galaxies

Origins of chemical elements

Graphic created by Jennifer Johnson

Astronomical Image Credits: ESA/NASA/AASNova

Chemical composition of the Sun

Fossils of 12 billion years of Galactic evolution

Bergemann, Hansen, and Beers (2019, in press)

Key cites, where elements are produced, have been identified but **the details of cosmic nucleosynthesis** are unknown

Astronomical Image Credits: ESA/NASA/AASNova

Graphic created by Jennifer Johnson

Fundamental stellar parameters

High-quality observations of stars

Powerful spectroscopic facilites multi-object, large-aperture, wide-field millions of spectra of stars in galaxies

PI: Bensby & Bergemann Stellar survey of Galactic disk and bulge

SWG: Bergemann & Huber Stellar physics & exoplanets

Fundamental stellar parameters

High-quality observations of stars

Robust spectral models and diagnostic tools

large facilities, million-star surveys APOGEE, Gaia-ESO, 4MOST, WEAVE, SDSS-V

Fundamental stellar parameters

High-quality observations of stars

Robust spectral models and diagnostic tools

large facilities, million-star surveys APOGEE, Gaia-ESO, 4MOST, WEAVE, SDSS-V ...

Problem: modelling stellar radiation field

Emergent spectrum depends on: physical conditions and chemical composition of stellar atmospheres

Classical models 1D LTE

1-dimensional

hydrostatic equilibrium

local thermodynamic equilbrium

convection using the Mixing Length Theory

Local Thermodynamic Equilbrium

rate equations for N energy levels + radiation transfer

$$\sum_{n>m} N_n \left(A_{nm} + B_{nm} u_v + C_{nm} \right) + \sum_{km} \left(B_{mn} u_v + C_{mn} \right) + \left(P_m + S_m \right) \right\} = 0$$

$$P_m = 4\pi \int \frac{a_v J_v}{hv} dv$$

spontaneous radiative emission A_{nm} photo-ionisation P_m recombination R_m collisional excitation C_{mk} charge transfer ...

photons, electrons, H atoms ...

Local Thermodynamic Equilbrium

rate equations for N energy levels + radiation transfer

$$\sum_{n>m} N_n \left(A_{nm} + B_{nm} u_v + C_{nm} \right) + \sum_{km} \left(B_{mn} u_v + C_{mn} \right) + \left(P_m + S_m \right) \right\} = 0$$

$$P_m = 4\pi \int \frac{a_v J_v}{hv} dv$$

spontaneous radiative emission A_{nm} photo-ionisation P_m recombination R_m collisional excitation C_{mk} charge transfer ...

photons, electrons, H atoms ...

3D convection

3D convection

The Sun model 1D static

3D convection

The Sun model 1D static

3D convection simulations

the same scales - both images 20x20 Mm

3D convection simulations

Kervella et al. (2009)

e-MERLIN radio interferometry (5 cm)

25.6

25.4

25.2

Interferometric observations resolve structure on stars: hot spots, 'plumes' and giant convective cells

ESO VLTI / AMBER Ohnaka et al. 2017

Haubois et al.

(2009)

2014

3D convection simulations

30

20

ESO VLTI / AMBER Ohnaka et al. 2017

Haubois et al. (2009)

Fundamental stellar parameters

High-quality observations of stars

Robust spectral models and diagnostic tools

Iarge facilities,
million-star surveys
APOGEE, Gaia-ESO,
4MOST, WEAVE, SDSS-V ...

Spectral models: state-of-the-art modelling of stellar spectra (NLTE, 3D)

Big data: framework to apply the models in the analysis of large datasets

Bergemann et al. 2010, 2011, 2013, 2015, 2017a,b, 2019; Eitner et al. 2019a; Schoenrich & Bergemann (2014), Gallagher et al. in prep, Kovalev, Bergemann (2019, subm.)

1D LTE

3D NLTE

Mn line in the Sun

HD 122563

HD 122563

1.0 **3D NLTE** 0.5 Abundance (log10) 0.0 -0.5 -1.0 ID LTE -1.5 3500 4000 4500 5000 6000 5500 Wavelength [Å]

HD 122563

Testing atomic physics

Bergemann et al. 2010; Belyaev, Yakovleva, & Bergemann in prep.

Testing atomic physics

Bergemann et al. 2010; Belyaev, Yakovleva, & Bergemann in prep.

Testing atomic physics

Bergemann et al. 2010; Belyaev, Yakovleva, & Bergemann in prep.

comparing with interferometry & asteroseismology LTE: large uncertainties

Schoenrich & Bergemann (2014)

comparing with interferometry & asteroseismology NLTE

interferometry

Kovalev et al. subm.

comparing with interferometry & asteroseismology NLTE

Kovalev et al. subm.

Does 3D NLTE spectral modelling matter?

Evolution of the Milky Way

*in astronomy, metals are all elements heavier than H and He [Fe/H] - metallicity

Evolution of the Milky Way

*in astronomy, metals are all elements heavier than H and He

Evolution of the Milky Way

Mg to Fe ratio

equal amounts of Fe and Mg

*in astronomy, metals are all elements heavier than H and He

Evolution of the Milky Way

Mg to Fe ratio

*in astronomy, metals are all elements heavier than H and He

Bergemann et al. (2017b)

<u>same</u> stars, just <u>different</u> models

1D LTE

we do not understand which explosions produce which elements

Bergemann et al. (2017b), Kovalev et al. subm

Testing astrophysical scenarios. Il *Progenitors of Type la supernova (SN)*

Explosion channels unknown source of a systematic uncertainty in cosmological measurements

Tod Strohmayer (GSFC), CXC, NASA, Illustration: Dana Berry (CXC)

Progenitors of Type Ia supernova (SN)

Type la SNe <u>are</u> 1D LTE 1.5 standard candles 1.0 Manganese 0.5 Standard explosions Mn/Fe] О Ο 0.0 - near--0.5Chandrasekhar mass channel -1.0-1.5-3 -2 $^{-1}$ -4 [Fe/H]

Iron

Bergemann & Gehren 2008 Kirby...Bergemann, Kovalev 2019 Eitner, Bergemann, Hansen et al. (in prep.) Kirby...Bergemann, Kovalev et al. (subm.)

Progenitors of Type Ia supernova (SN)

Manganese

Bergemann & Gehren 2008 Kirby...Bergemann, Kovalev 2019 Eitner, Bergemann, Hansen et al. (in prep.) Kirby...Bergemann, Kovalev et al. (subm.)

Dynamical history of the Galaxy

Testing astrophysical scenarios. III *Dynamical history of the Galaxy*

Milky Way: rich in substructure: streams and overdensities constraints on the Galactic potential, accretion history

Testing astrophysical scenarios. III *Dynamical history of the Galaxy*

Milky Way: rich in substructure: streams and overdensities constraints on the Galactic potential, accretion history

Belokurov et al (2006), Bell et al (2008), Helmi & White (2001), Johnston et al (2005), Martin et al. (2007), Penarrubia et al. (2010), Law & Majewski (2010)

Origin of stellar overdensities in the halo?

• debris from disrupted satellite galaxies? Yanni et al 2003, Penarrubia et al 2005, Sheffied et al 2014

Origin of stellar overdensities in the halo?

- debris from disrupted satellite galaxies? Yanni et al 2003, Penarrubia et al 2005, Sheffied et al 2014
- a giant flare / warp in the outer disc?

Momany et al 2006

20

0

((kpc)

pro.

Origin of stellar overdensities in the halo?

Declination (J2000)

2°

0°

-2°

235°

- debris from disrupted satellite galaxies? Yanni et al 2003, Penarrubia et al 2005, Sheffied et al 2014
- a giant flare / warp in the outer disc? Momany et al 2006
- disrupted globular clusters, or halo stars?

Right Ascension (J2000)

230°

225°

Origin of stellar overdensities in the halo?

- debris from disrupted satellite galaxies? Yanni et al 2003, Penarrubia et al 2005, Sheffied et al 2014
- a giant flare / warp in the outer disc? Momany et al 2006
- disrupted globular clusters, or halo stars?
- remnants of the disc oscillation induced by the interaction with a satellite galaxy?

Weinberg 1989, 1998, Gomez et al 2016, Laporte et al 2017, 2018

Weinberg 1989, Purcell et al 2011, Gomez et al 2013, 2016, Laporte et al 2017, 2018

Sagittarius + Milky Way interaction

Laporte et al 2017, 2018

Chemical tagging?

dwarf galaxies stand out in the chemical abundance space

Tolstoy, Hill, & Tosi (2009)

Testing astrophysical scenarios. III two prominent overdensities in the halo

Sheffield et al., Slater et al. (2014)

Testing astrophysical scenarios. III two prominent overdensities in the halo

Bergemann et al. (2018, Nature)

Testing astrophysical scenarios. III *Dynamical history of the Galactic disk*

- Stellar abundances diagnose birth origin of stars
- The Milky Way disc is oscillating vertically

Antoja et al. (2018), Bland-Hawthorn et al. (2019), Fernandez-Alvar et al. (2<mark>019), ...</mark>

Mass-metallicity relationship of galaxies

50,000 SDSS galaxies

O abundance from nebular emission lines (empoying calibrations)

Tremonti et al. 2004

Mass-metallicity relationship of galaxies

50,000 SDSS galaxies

O abundance from nebular emission lines (empoying calibrations)

Milky Way data: direct abundances from stars

Tremonti et al. 2004

Stellar spectroscopy beyond the Milky Way

Davies et al. (2011, 2015, 2017) Lardo et al. (2015), Patrick et al. (2017**)** IC 1613 proposal submitted New models to allow quantitative stellar spectroscopy and abundances in galaxies

Bergemann et al. (2012,2013,2015) **Eitner, Bergemann**, & Larsen (2019)

Summary

• Discovery

- large telescopes and million star surveys
- over next 20 years (Gaia, 4MOST, ...ELT)

Characterisation

- rigorous machinery in place (NLTE, 3D)
- physical diagnostics: elemental abundances, masses, ages
 nlte.mpia.de

Beyond

- cosmic nucleosynthesis
- stellar populations, Milky Way formation
- history
- metallicity distributions of galaxies based on stars: pathfinder to first large extra-galactic surveys for resolved stars: JWST, E-ELT

UV to infra-red spectra of stars, model

wavelength