5th May 2020 Seminaire Lagrange

The Milky Way as a laboratory for galaxy formation and dark matter

Chervin F. P. Laporte

IPMU Fellow

The Milky Way Galaxy as a laboratory for galaxy formation and dark matter

Bullock & Johnston 05

The Field of Streams - a testament of the hierarchical growth of the MW

Belokurov+06

But are all streams on the sky necessarily accreted?

The Field of Streams - a testament of the hierarchical growth of the MW

Belokurov+06

But are all streams on the sky necessarily accreted?

"Monoceros Ring"

d~10 kpc

Eastern Banded Structure

Anticenter Stream

"Monoceros Ring"

d~10 kpc

<-stream

Eastern Banded Structure

Sgr ->

Anticenter Stream

"Monoceros Ring"

Sgr -> <-stream

Local oscillations of the disc

60 40 20 V_Z (km s⁻¹) $n (kpc^{-3})$ 108 -20 0.5 0 105 0.1 0.05 20 0 Vz [km/s] 0 -0.05 -0.1-202 -2 1 -1 (kpc) $\mathbf{Z}_{\mathsf{obs}}$

pre-Gaia

Laporte+19c

Prelude pre-Gaia DR2 models

Previous works on impact of Sgr on the disc

- Test-particle simulations: Quillen+09 -Warp, Ring-like structures (qualitative only, quickly phase mixes)
- N-body: Purcell+11, similar conclusions, but qualitative only, Monoceros ring not reproduced, also ad-hoc ICs.
- Gomez+13: disc bending in SN, but amplitudes are too high, phases not matched. same ICs P11.
- Laporte+18a (used in Price-Whelan+15): TriAnd-like structure qualitatively reproduced too but amplitude too low. same ICs P11.

Price-Whelan...CFPL+ 15

Prelude pre-Gaia DR2 models

Sgr induces vertical oscillations in the Solar neighbourhood

Laporte+18b

vertical displacements about the midplane of the disc

vertical heating (flaring) about the midplane of the disc

...and outer disc structures

A tour de force: Chemical abundance measurements

ACS-like structures in numerical N-body simulations

feathers

Laporte, Johnston, Tzanidakis+19a

ACS-like structures in numerical N-body simulations

feathers

Bernard+16

Laporte+19a

A closer look at an **individual ``feather''** mean motion about epicyclic/vertical frequencies.

Laporte+19a

A closer look at an **individual** ``**feather**'' mean motion about epicyclic/vertical frequencies.

Laporte+19a

A closer look at an **individual** ``feather" mean motion about epicyclic/vertical frequencies.

Does this interpretation hold in the MW?

Confirmation of the disc nature of feathers kinematics

Confirmation of the disc nature of feathers chemistry

Confirmation of the disc nature of feathers chemistry

Confirmation of the disc nature of feathers ages distributions

Using the disc to constrain the orbital mass loss history of Sgr

Lara-Ruiz et al. 2020

Pre-Gaia DR2 models in light of the Gaia DR2 era

The non-axisymmetric & non-steady state Galaxy

Evolution of Galactic disc during very last stages of Sgr's orbit

Simulated velocity fields

Local effect of Sgr in the Solar Neighbourhood

Disc response during last stages of Sgr's orbit

phase-space spiral behaviour in a **Galactic** potential perturbed by a recent satellite encounter

Timing the event with (isochrone*) ages

Decomposed by age young or old, all spirals have the same shape -> consistent with t_onset~1.0-0.5 Gyr and t_orb~0.7-1Gyr

Rules out bar excitation model (e.g. Khoperskov+19)

Probing prior and most recent perturbation events constraining the orbital mass loss of Sgr

But what about the LMC?

Dynamical friction and its effect on dark (and luminous) matter

Dynamical friction and its effect on dark (and luminous) matter

- The LMC creates a wake in the MW: Local (Chandrasekhar43) and a global one (Weinberg89,98) -> overdensity in stellar halo
- The LMC pulls the MW down -> upward motion relative to us

DM halo response translated onto the stellar halo density & kinematics

Wake behind LMC

Predicted upward motion of stellar halo

Garavito-Camargo, Besla, CFPL, et al. (2019)

see also Gomez+15, Peterson+20, Erkal+20 for barycenter motion induced by LMC infall

LMC tides also affects streams like Orphan

Erkal, Belokurov, Laporte+19

Implication for kinematics of satellites >30 kpc

-> biases mass measurements high (~50%) and shape measurements

Implications for ignoring the effect of the LMC affects

- Inferred orbits of satellites
- Mass (>30 kpc)
- Shape measurements

adapted from Laporte+18a & Simon18

Conclusions

- Sagittarius as a prime architect of the MW: **local perturbations** and **global perturbations** of the disc
- Many accreted structures turn out to be just kicked stars from past interactions with Sgr (Laporte+18b)
- Sgr affects the dynamics but also star formation history of the Galaxy (Laporte+20, Lara-Ruiz+20)
- LMC major recent perturber of the DM halo, stellar halo and outer disc (warp): affects streams, satellites, GCs, tracers - cannot be ignored anymore (Laporte+18a, Garavito-Camargo+19).
- Distortions produced in MW DM halo are a central falsifiable prediction of all DM models, can be mapped with future facilities. Some signs of detection already exist (Belokurov+19).
- Understanding the data from Gaia needs development of **detailed models of the MW in its local environment** (past & present) to interpret and piece together its formation.
- For disc: Sgr is a strong driver of non-axisymmetries across the disc.
- For halo: Basis function expansion methods should prove useful to describe the contributions of the debris of the LMC, the LMC, the wake and the underlying MW halo (and its shape).