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¢ The cosmic large-scale structure is mostly the result of the gravitational clustering
of cold dark matter (CDM)

¢ CDM isextremely weakly interacting — collisionless on cosmic scales

¢ Theevolution of CDM is governed by the cosmological Vlasov—Poisson equations

\ ~ 20 Mpc ~ 10**m |



CDM phase-space; (1y < 1, < 1)

at early times CDM isinthe single-stream regime
(= comes with single-valued velocity)

collisionless nature of CDM leads to
crossing of trajectories, called shell-crossing

after that, CDM isin the multi-stream regime
(with non-zero velocity dispersion)




CDM phase-space; (1y < 1, < 1)

at early times CDM isinthe single-stream regime
(= comes with single-valued velocity)

collisionless nature of CDM leadsto

crossing of trajectories, called shell-crossing
(densityat « — o0)

after that, CDM isin the multi-stream regime
(with non-zero velocity dispersion)







time

bound structures (halos) are formed

... through many infinities to come!

- How to theoretically model such singularities ?
» When isthefirst shell-crossing ?

Key questions.
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+ we resolve shell-crossings:

- first non-trivial analytical shell-crossing solutions
¢ for random initial conditions, we employ very efficient

semi-numerical algorithms

4+ recent mathematical progress makes it possible to push the modelling

beyond the first shell-crossing

% we detect so far unknown singularities in Vlasov—Poisson

(associated to the known infinite densities)

s« analytical evidence is confirmed by high-resolution simulations
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Shell-crossing isa key theoretical uncertainty for the matter power spectrum P(k)

<P(k1)P(k2)>c ~ op(k; + k) P(k)

1D (fake) universe,
z =0 (“today”) t
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2 In 1D, the theoretical
Zeldovich solution is
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(see |ater)
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Motivation

Shell-crossing isa key theoretical uncertainty for the matter power spectrum P(k)

1D (fake) universe,
z =0 (“today”) t
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<P(k1)P(k2)>c ~ op(k, + ky) P(k)

In 1D, the theoretica
Zeldovich solution iIs
exact until shell-crossing
(see |ater)

[McQuinn & White '15]

Theoretical insight into the highly non-linear problem isrelevant to
e provide accurate initial conditions for numerical simulations,

e extract iInformation from observations, etc.
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Vip = # [ / fdp — ,0] coupled to an effective Poisson equation

x = r/a(t) are comoving coordinates,
a(t) 1scosmological scale factor determined via

, <a>2 872G
H=—) =——/p@®H+A

3/‘\

mean matter density of the Universe

cosmological constant

Hubble parameter
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(m =1)
df(f{tp’ 2 = % + % Vaef—(Vap) -V, f =0 the * pedantic” Vlasov eguation
Vip = inG [ / fdp — p] coupled to an effective Poisson equation

a

For CDM, however, f(x,p,t) only occupies a 3D hypersurfacein phase-space,

the Lagrangian submanifold:

g

b

velocity

1+1p
POsition

Thus, a“full” 7D (space, momentum, time) description is overkill
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Parametrise CDM phase-space with the Lagrangian map R> RS : g~ (x,v)

with velocity v = 0tx L /
Initial position of CDM

Vlasov—~Poisson (VP) for CDM reduces exactly to

X(q,t)+2H(t)x(q,t) = — V, p(x(q, 1))

V2o(x(g. 1) = 222 ( "d3q’5§><x<q, 1) — x(q',1)) - 1)

a

Solved by:

» cosmological N-body simulations using an N-particle approximation
- analytical Lagrangian-coordinates approaches in the continuum limit
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coarse-sample  FN=30 : - ‘N=100/j ..... -

phase space B e

continuum limit (N — oo) may also be obtained by tessellating the phase-space sheet:

density snapshots

<«— ripple wave test problem

matter smulation —»

[Hahn & Angulo 2016]
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Until shell-crossing: (see following slides)

+ VPreduces exactly to cosmic fluid equations phase-space

¢ avoid Eulerian approaches due to infinite densities T~

¢ 7 time-analytic solutions with Lagrangian perturbation theory

- tisdimensionlesstime variable (x a in Einstein-de Stter universe)

- central quantity isthe displacement field &(q,7) := x(q,7) — q

BIFURCATION

After shell-crossing:  (seelater)

+ fluid equations break down due to commencing bifurcation

¢ need shell-crossing solutions to provide boundary conditions

+ solve Lagrangian multi-stream egs. with refined strategy

10
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Continuiity €q, 0,0+ V - [1+0o]v=0 .~ peculiar velocity (w.r.t. background)
3 & 'l (A
Euler eq. 0Tv+v-Vv=—2—(v+Vgo) 0:=(p=pIp
T
_ ) 7 Isdimensionless time variable
Poisson eq. Vop =dlt (= ain the Einstein-de Sitter model)

Remain regular for = — 0 iff one imposes the slaved boundary conditions

5ini = () : vini — quini [Brenier'87; Brenier, Frisch, Hénon++ '03]

selects growing-mode solutions, and V Xv =0

provides the foundation of power series expansion around 7 = 0

00 00
e.g., in Eulerian coordinates; set § = Z sW(x) 7" andv = Z y(x) 7"
_ _ n=1 n=1
= all-order recursion relations [Goroff, Grinstein, Rey & Wise '86]

12
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Introduce Lagrangian map g — x(q,7) = q + &(q, ) of initial positiong (at 7 = 0)
to current position x at time 7, solution of characteristic equation v = o-x

seminal works by Zel'dovich '69, Buchert 89, '92, Bouchet++ 92, etc. R _ _ S
Lagrangian time derivative

Then the fluid equations become the “real VP’
3 3 fo - <%) VC/,/
(0;)* x(q,7) +—07%(¢,7) = — — V,0(x(g.7)) |
27T 27T

Vigp(x(g,v) = 8(x(q.7) /7

only before shell-crossing!

5(x(q,7) + 1 = Jd3q'6§><x<q, N —x(q,1) =

det[ V x(q,7)]
0 0)
The Ansatz &g, 7) = Z E(q) " leadsto explicit all-order recursion relations
n=1 [CR’12; Zheligovsky & Frisch '14; Matsubara '15]

13
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“Full” solution &(q, 7) = Z E"(q) 7" naturally represented as Helmholtz—Hodge problem:
n=1

s+ (s —n)> + (n—3)/2

L g(n) — . pini (n—s) £(s) (n—s) £(s)
v, £ =V s Y (0960 — -9

2n?+n-73
O<s<n 5
1 Y si+sy+s3+(n—3)2 Eg g
W2t (n_3)y2 M
S1+S,+s3=n
vV x EM — N7 2 e s v g9 . o
g X&" = Z " ék X 5k summation over repeated spatial indices assumed

O<s<n

How long In time can we trust this solution ?

generally depends on precise from of initial conditions (1Cs)

for fairly generic ICs, Zheligovsky & Frisch’14 and CR, Villone & Frisch’15 obtained
lower bounds on the radius of convergence of &(q, 7) = Z EN(q) 7"

n=1 14
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Thus, for generic ICs, the power series expansion for the displacement
has anonzero (or infinite) radius of convergence! The complex time domainis

A shell-
. crossing

. 0 _ Re{r}
et x

CDM enters enters into the multi-stream regime

lower bound on the actual radius of convergence

15
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Thus, for generic ICs, the power series expansion for the displacement
has anonzero (or infinite) radius of convergence! The complex time domainis

" shell-
‘- crossing

. 0 Re{7)
erneet x

CDM enters enters into the multi-stream regime

lower bound on the actual radius of convergence

more specific, analytical statements can be made for specialised ICs

for generic ICs, numerical tests are required to determine the actual radius of convergence

If shell-crossing cannot be reached in a single time step = multi-time stepping

(seems not to be required in our case; see later)
15



Consider in the following the problems

1. one-dimensional collapse 0000
2. quas one-dimensional collapse 0000
3. spherical & quasi-spherical collapse 0000
4. three-dimensiona sine-wave collapse 90000
5. collapse for cosmological |Cs 00000
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In 1D, &(q, 7) = EM(q) T isthe exact (“ Zel’dovich”) solution until shell-crossing

[Novikov '69, Zel'dovich '69]

“Proof:” in Lagrangian coordinates the fluid equations are exactly linear in 1D.
Thusthe linear solution is exact (map Is an entire function in 7), and the

mathematical radius of convergenceisinfinite. m

L 2
R S shell-
: . Crossing
‘o" O “,' R€ { T }

17
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©@0000

In 1D, &(q, 7) = EM(q) T isthe exact (“ Zel’dovich”) solution until shell-crossing

[Novikov '69, Zel'dovich '69]

credit: M. Buhlmann
17
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18
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0000

briefly, embedding 1D and quasi 1D problemsin 3D:

1D col I

quasi-1D collapse

color hue denotes initial gravitational potential o™

18
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% Departure from 1D leads to a population of all coefficientsin &(q, 7) = Z EN(q) 7",

n=1

however with very strong decay in amplitudefor n — oo

% Radius of convergenceis still infinite

% Mathematical proof e ementary, requires usage of multiscaling techniques

[CR & Frisch '17]

18
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% Spherical top-hat over-density
Popular model in cosmology [Peebles ‘67]

% Lagrangian power series converges slowly

low-order solutions: [Munshi, Sahni & Starobinsky '94]

19
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00000

% Spherical top-hat over-density
Popular model in cosmology [Peebles ‘67]

% Lagrangian power series converges slowly

low-order solutions: [Munshi, Sahni & Starobinsky '94]

% ratio test (Domb—Sykes) pointsto a
singularity at shell-crossing:

[Domb & Sykes '57] [CR'19]

0.9
: i 0.8 t 593 - o Tl
R 3 o8 » L[V s
R a. . 0498 % Mz
g e
g 0.6 fcm""
05 T E—
| On/an—l
M4 Lagrangian coefficients |
Ln 0.3 1 ~ (here up order 1000) |
0.2 r 72740. ~ |
I - 01| [Spherical case) .
— = lim 1 | | | |
n—oo O0,_1
0.0 0.1 0.2 0.3 0.4 0.5
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Spherical top-hat collapse

it'sareal singularity:
velocity becomes infinite
(see |ater)

shel- Re{r}
crossing
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quasi-spherical top-hat [CR "19]

perturbing the top hat shifts
the singularity to later times

shel- Re{7}
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Spherical top-hat collapse

[CR '19]

it'sareal singularity:
velocity becomes infinite

shel- Re{t}

crossing
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00000

[Saga, Taruya & Colombi, PRL 2018]
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. o
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00000

[Saga, Taruya & Colombi, PRL 2018]

. Zel'dovich -
- QlD 2nd e .
'_ LPT 10th ====--

| P Extrapolation

- ,,.n"‘“‘ Simulation

|

P

- spherical

~ collapse

-0.4

singular velocity at shell-crossing

22
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00000
The standard for generating 1Cs for cosmological ssmulationsis using
€(q,7) = Z EW(g)r" withn_ =2, butweneed at least n_. =3
n=1

for performing the “simplest” convergence test:
[Michaux, Hahn, CR & Angulo '20]

A
ratio test:
L e
_— = m z=11.5
R noeo [[E-D)] oF
% - %
s 7 =49 GE)
we calculate ¥ for s = 1,2,3 = =
®
1 IEDN 11EP] P
2 =3 zan T Fea
R 2 [[ED]] =

1Gpc/h, N = 1024

s the latest possible time for which convergence .
< box size

Tmax

is still guaranteed for 68%, 95%, or 99.7% of particles

fluctuation scale o > 23



[CR & Hahn, in preparation]
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Numerical implementation of the Lagrangian recursion relations in c++

+ fully de-aliased code (memory intensive, involving triple convolutions)

+ supportslong double precision, in our case double is sufficient for n,_,, = 40

N =128 L, = 125Mpc/h

N =256, L, = 125Mpc/h

........ Domb-Sykes

————— Mercer-Roberts

“Ox.

-
:L- -------------
------

_—
-
e e

6L
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50 ——_ . mm—_— Mercer-Roberts
- \ﬁ
- ..’\
i RO
4r ) \\\
K ~u\\
L N
L ’,‘ \\
3r *e, N
- ’~~ \
i IS
o[ ~~~\\
TR S
e S
r TS
1 *R.;.--.-.L.=.-
.......................
0.05 0.10 0.15 0.20
1/n

work in progress — but it appears that the first singularity is after shell-crossing

24
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[Taruya & Colombl 17 Pietroni’18; CR,Frisch & Hahn 19]

£q.) x - Vok@. D) Ly

| det x; (g,) |

nroots

—~

acceleration X gravitational force L . .
nontrivial with multi-streaming where RHS — oo;

but V ¢ remains finite in Lagrangian coordinates!

26
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[Taruya & Colomb| 17; Pietroni’18; CR,Frisch & Hahn 19]

£q.) x - Vok@. D) Ly

~ 3 | detx; (q,) |
—_— —

acceleration X gravitational force

nontrivial with multi-streaming where RHS — oo;
but V ¢ remains finite in Lagrangian coordinates!

General strategy:

1. solve for the trajectories x, until the first shell-crossing with LPT

2. provide boundary conditions at shell-crossing

velocity

3. solve multi-stream equations with refined strategy position

X‘ (q 0 Cl) X — Vx ¢g(x SC(q 0 a)) computation requires catastrophe theory
-

exact until shell-crossing, approximative shortly after

26
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[CR, Frisch & Hahn'19]

® ® o N-body N ~ 10%/30

== == == OUI theory

acceleration a = X

27
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[CR, Frisch & Hahn'19]

® ® o N-body N ~ 10%/30

== == == OUr theory

acceleration a = X

Derivatives in phase-space blow up, evidencing truly singular behaviour in Vlasov-Poisson !

By contrast, the well-known density singularities are not really a problem in phase-space,

as they appear as projection effects (there is no 'shell-crossing in 6D’). -
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[CR,Frisch&Hahn19]

sudden movement of particle % at ¢ = 0 due to forcing asymmetry, which kicks in only after shell-crossing:

X/tbefore

Tshell—crossing _
~ o o
W\ § | = Symmetric

asymmetric
4*> !
< - ® ©® N-body
Tafter x
v D

non-analytic !

28
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[CR,Frisch&Hahn’19]

sudden movement of particle % at ¢ = 0 due to forcing asymmetry, which kicks in only after shell-crossing:

Thefore

Wiﬂcmssmg

—

< Tafter

\

non-analytic !

1.00 1.02 1.04

to determine this in theory: exploit invariance of Vlasov-Poisson under non-Galilean transformations o8
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+ significant theoretical progress on a highly non-linear problem
(asubject that in cosmology is usually reserved for ssmulations)

¢ we have now toolsto finally pin down the first shell-crossing

o direct application: setting up |Cs for ssmulations as accurate
and late as possible

¢ Indirect applications:
<+ Numerical codefor Lagrangian recursion relations:

straightforward to adopt to incompressible Euler in 3D

% Post-shell-crossing theory:
could be applied to investigate problems in plasma physics
(e.g., bump-on-tail instability, multiple cold or warm beams)



