Cosmology with galaxy clusters The Sunyaev-Zel'dovich effects to probe the formation of distant clusters

Rémi Adam Laboratoire Lagrange (OCA) - CNES

Séminaire OCA Nice - 23/05/2017

Laboratoire de Physique Subatomique et de Cosmologie

R. Adam^{1,2}, I. Bartalucci³, G. W. Pratt³, P. Ade⁴, P. André³, M. Arnaud³, A. Beelen⁵, A. Benoît⁶, A. Bideaud⁴, N. Billot⁷, H. Bourdin⁸, O. Bourrion², M. Calvo⁶, A. Catalano², G. Coiffard⁹, B. Comis², A. D'Addabbo^{6,10},
M. De Petris¹⁰, J. Démoclès³, F.-X. Désert¹¹, S. Doyle⁴, E. Egami¹², C. Ferrari¹, J. Goupy⁶, C. Kramer⁷, G. Lagache¹³, S. Leclercq⁹, J.-F. Macías-Pérez², S. Maurogordato¹, P. Mauskopf^{4,14}, F. Mayet², A. Monfardini⁶, T. Mroczkowski¹⁵, F. Pajot⁵, E. Pascale⁴, L. Perotto², G. Pisano⁴, E. Pointecouteau^{16,17}, N. Ponthieu¹¹, V. Revéret³, A. Ritacco², L. Rodriguez³, C. Romero⁹, F. Ruppin², K. Schuster⁹, A. Sievers⁷, S. Triqueneaux⁶, C. Tucker⁴, M. Zemcov^{18,19}, and R. Zylka⁹

[Credit: ESA - C. Carreau]

What is the nature of dark matter?

What is the cause of the accelerating expansion of the Universe?

What is the correct description of gravity on cosmological scales?

What is the origin of the fluctuations that led to the structures we observe today?

How does the baryonic matter co-evolve with the dark matter?

Outline

1. Clusters of galaxies as cosmological probes

- 1. Testing cosmology with massive halos
- 2. The Sunyaev-Zel'dovich effects
- 3. Current status and limitations of SZ cluster cosmology

2. Pushing observations at high redshift with NIKA

3. Mapping the gas velocity in clusters

4. Conclusions and perspectives

Outline

1. Clusters of galaxies as cosmological probes

- 1. Testing cosmology with massive halos
- 2. The Sunyaev-Zel'dovich effects
- 3. Current status and limitations of SZ cluster cosmology

2. Pushing observations at high redshift with NIKA

- **3. Mapping the gas velocity in clusters**
- 4. Conclusions and perspectives

From primordial fluctuations to galaxy clusters: tracing the matter distribution

[www.multidark.org]

Cosmology with galaxy cluster number count

Cosmology with galaxy cluster bulk velocities

- 1. Peculiar velocity count of large samples [e.g., Bhattacharya & Kosowsky (2008)]
- 2. Large velocities of merging cluster pairs [e.g., Thompson & Naganime (2012)]

[Markevitch et al., Clowe et al.]

Again, sensitive to both gravity and geometry

What is the true peculiar velocity of clusters?

Observing clusters of galaxies

We need to rely on baryonic tracers

Linking cluster observables to their underlying total matter distribution

We cannot measure the mass (or the velocity) for every cluster in a survey: need scaling relations

log Mass

Any cosmological interpretation requires the control of cluster formation processes

Looking at clusters using the SZ effects

• tSZ = CMB spectral distortion from interaction with clusters' hot electrons • kSZ = CMB Doppler shift from bulk motion of electrons (typically ~ tSZ/10) $\frac{\Delta I_{\nu}}{I_0} = f_{\nu} \ y_{\text{tSZ}} + g_{\nu} \ y_{\text{kSZ}}$ $\begin{cases} y_{\text{tSZ}} = \frac{\sigma_{\text{T}}}{m_e c^2} \int P_e d\ell \quad \Longrightarrow \quad \text{Pressure} \\ y_{\text{kSZ}} = \sigma_{\text{T}} \int \frac{-v_z}{c} n_e d\ell \quad \Longrightarrow \quad \text{Velocity} \times \text{density} \end{cases}$ El Gordo [http://chandra.harvard.edu] CMB v = +2492 km/s, simultated cluster 2.0^{1e-3} tSZ 1.5kSZ tSZ + kSZ1.0 Observer ∆ا/ا₀ 0.5 0.0 -0.5-1.0 [Ruan et al. (2013)] SZ = probe for intracluster gas 400 1000 200 600 800 GHz

Looking at clusters using the SZ effects

- tSZ = CMB spectral distortion from interaction with clusters' hot electrons
- kSZ = CMB Doppler shift from bulk motion of electrons (typically ~ tSZ/10)

Looking at clusters using the SZ effects

- tSZ = CMB spectral distortion from interaction with clusters' hot electrons
- kSZ = CMB Doppler shift from bulk motion of electrons (typically ~ tSZ/10)

tSZ only here [ESA HFI/LFI consortia]

v = +2492 km/s, simultated cluster 2.0^{1e-3} tSZ 1.5kSZ tSZ + kSZ1.0 ∆ا/ا₀ 0.5 0.0 -0.5-1.0 [Ruan et al. (2013)] -1000 400 600 200 800 0

GHz

Cosmology with the SZ effects

➡ tSZ pressure ~ total mass
➡ kSZ momentum ~ velocity

SZ = excellent tracers of the matter distribution

SZ status after Planck (and other surveys)

- Formalism in the early 70's [Sunyaev & Zel'dovich (1970)]
- First tSZ detections in the 70's
- First (statistical) kSZ detection *[Hand et al. (2012)]*
- Detailed study of nearby clusters [e.g., Planck VIII (2013), Planck X (2013)]
 Pressure profile of nearby clusters [Planck V (2013)]
- All-sky tSZ catalog of 1653 clusters [Planck XXIX (2013), Planck XXVII (2015)]
- Full sky tSZ map
- [Planck XXII (2015)]
- Number count
- [Planck XXIV (2015), Planck XX (2013)]
- See also results by SPT, ACT, ...
- Tensions between CMB & local Universe

Huge progress & new fundamental questions

SZ status after Planck (and other surveys)

- Formalism in the early 70's [Sunyaev & Zel'dovich (1970)]
- First tSZ detections in the 70's
- First (statistical) kSZ detection *[Hand et al. (2012)]*
- Detailed study of nearby clusters [e.g., Planck VIII (2013), Planck X (2013)]
- Pressure profile of nearby clusters [*Planck V (2013)*]
- All-sky tSZ catalog of 1653 clusters [*Planck XXIX (2013), Planck XXVII (2015)*]
- Full sky tSZ map [Planck XXII (2015)]
- Number count

[Planck XXIV (2015), Planck XX (2013)]

- See also results by SPT, ACT, ...
- Tensions between CMB & local Universe

Huge progress & new fundamental questions

SZ status after Planck (and other surveys)

- Formalism in the early 70's [Sunyaev & Zel'dovich (1970)]
- First tSZ detections in the 70's
- First (statistical) kSZ detection *[Hand et al. (2012)]*
- Detailed study of nearby clusters *[e.g., Planck VIII (2013), Planck X (2013)]*
- Pressure profile of nearby clusters [*Planck V (2013)*]
- All-sky tSZ catalog of 1653 clusters [*Planck XXIX (2013), Planck XXVII (2015)*]
- Full sky tSZ map [Planck XXII (2015)]
- Number count

[Planck XXIV (2015), Planck XX (2013)]

- See also results by SPT, ACT, ...
- Tensions between CMB & local Universe

Misunderstanding of cluster physics? Hint for new physics? Neutrino masses? Statistical fluctuation?

ightarrow Need to explore the SZ signal inner structure at high z with high angular resolution follow-ups

Huge progress & new fundamental questions

Outline

1. Clusters of galaxies as cosmological probes

- 1. Testing cosmology with massive halos
- 2. The Sunyaev-Zel'dovich effects
- 3. Current status and limitations of SZ cluster cosmology

2. Pushing observations at high redshift with NIKA

3. Mapping the gas velocity in clusters

4. Conclusions and perspectives

NIKA2: the next generation millimeter wave continuum instrument at the IRAM 30m telescope

Observations at the telescope

Data reduction: mapmaking from raw data

The processing affects the reconstructed signal

Calibration of the maps

The NIKA cluster sample (at 150 GHz)

The NIKA cluster sample (at 150 GHz)

Outline

1. Clusters of galaxies as cosmological probes

- 1. Testing cosmology with massive halos
- 2. The Sunyaev-Zel'dovich effects
- 3. Current status and limitations of SZ cluster cosmology

2. Pushing observations at high redshift with NIKA

3. Mapping the gas velocity in clusters

4. Conclusions and perspectives

MACS J0717.5+3745 from radio to X-ray: removing the "contaminants"

- Radio emission (litterature + FIRST & NVSS)
- IR emission (Herschel)

Cleaning with multi-wavelength SED modeling

MACS J0717.5+3745: Detection of a lensed galaxy at z ~ 4.5

Follow-up proposed with NOEMA

Extracting the kinetic SZ signal

We detect kSZ signal !

Imaging the kinetic SZ effect: a first kSZ map

Comparison to multi-wavelength data

A complex structure associated to 2 main sub-clusters

Constraints on the gas line-of-sight velocity

$$y_{\rm kSZ} = v_z \times \tau$$

(velocity × density)

- Need an external gas constraint from X-ray (T_x)
- Fit for a density model

Exceptionally large v_z , but fine with ΛCDM

Mapping the gas line-of-sight velocity

A new way to probe the assembly of distant clusters

Outline

1. Clusters of galaxies as cosmological probes

- 1. Testing cosmology with massive halos
- 2. The Sunyaev-Zel'dovich effects
- 3. Current status and limitations of SZ cluster cosmology

2. Pushing observations at high redshift with NIKA

3. Mapping the gas velocity in clusters

4. Conclusions and perspectives

The NIKA2 SZ large program

SZ large program

- 300 hours dedicated for SZ
- ~ 50 clusters at 0.5 < z < 1
- Planck/ACT clusters: representativity
- Combine NIKA with **Planck**, **X-ray**, **optical**, **radio**, **submm** and other datasets

Main goals

- Calibrating the **tSZ flux** as a **mass** proxy and its **evolution** with redshift
- Characterize the structural properties and clusters dynamical state
- kSZ imaging in individual clusters

NIKA2 perf. demonstrated, observations have started

Conclusions

The SZ effect in the Planck era

- The SZ effects are excellent astro. & cosmo. probes
- Planck/SPT/ACT have pushed the field to a new era
- Need high angular resolution follow-up: substructure, high z, kSZ

Status of SZ imaging

- Pathfinders such as NIKA have established great capabilities
- SZ imaging: test case demonstration and outstanding results

Next steps for SZ cluster cosmology

- Pathfinders studies to be applied on cosmological samples (e.g., NIKA2)
- Next generation CMB experiments in prep.: huge potential for kSZ

Next steps for cluster cosmology

- Large optical/NIR surveys should soon revolutionize cluster cosmology
- Robust mass determination to percent level, up to high z, will be crucial

Cosmology with cluster count

Survey selection function (purity/completness): ➡ control systematics in detection (e.g. signal shape versus redshift) Mass observable relation: → control systematics in sample mass determination

Robust cosmological parameters estimation requires control on cluster physics

NIKA2: kinetic inductance detectors (KID) development

- KID = superconducting LC resonator
- Absorbed photons change the kinetic inductance by breaking Cooper pairs

$$\delta f_0 \propto \delta L_k \propto P_{opt}$$

1 Detector cross-talk limited

KIDs are competitive detectors

[Catalano et al. (2014), Adam et al. (2014)]

Sub-structures detections in high redshift SZ imaging

