

The high-dimensional and multi-modal Bayesian inference code

Application to Asteroseismology

Enrico Corsaro

enrico.corsaro@cea.fr CEA Saclay

Bayesian Statistics

Bayes Theorem

$$\mathbf{D} = \{d_1, d_2, \dots, d_m\}$$
$$\mathcal{M} = \mathcal{M}(\boldsymbol{\theta})$$

 $\boldsymbol{\theta} = \{\theta_1, \theta_2, \dots, \theta_k\}$

k free parameters (parameter vector)

Dataset (observations)

Model to be tested

k-dimensional **parameter space** defined by the free parameters

 $p(\boldsymbol{\theta}) = \frac{\mathcal{L}(\boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\mathcal{E}}$ 4

Bayesian Inference

• The Bayesian inference of a dataset is divided in two problems:

Parameter Estimation

Allows to obtain the estimates of all the free parameters and the corresponding error bars

Model comparison

Provides a way to select the best model to represent the observations among different possible ones

Parameter estimation

• k-dimensional parameter space

 $oldsymbol{ heta} = \{ heta_1, heta_2, \dots, heta_k\}$ k free parameters (parameter vector)

Marginal PDF

• To obtain the PDF of a single parameter we can marginalize the posterior PDF

Model comparison

Likelihood Prior Posterior

Model comparison

• **Bayesian Evidence** is an a-dimensional quantity given as a k-dimensional integral over the entire parameter space (does not exist in frequentist approach!)

$$\mathcal{E} = \int \mathcal{L}(\boldsymbol{\theta}) \, \pi(\boldsymbol{\theta}) \, d\boldsymbol{\theta}$$

$$p(\boldsymbol{\theta}) = \frac{\mathcal{L}(\boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\mathcal{E}}$$

Model comparison

• **Bayesian Evidence** is an a-dimensional quantity given as a k-dimensional integral over the entire parameter space (does not exist in frequentist approach!)

$$\mathcal{E} = \int \mathcal{L}(\boldsymbol{\theta}) \, \pi(\boldsymbol{\theta}) \, d\boldsymbol{\theta}$$

$$\Omega_{\mathcal{M}}$$

<u>WEIGHT</u>: simple models are preferred (Occam's razor)

Problems

- For **k > 3** no more analytical solutions to the marginalization problem (hence also the computation of the Bayesian Evidence integral)
- Numerical integration needed but for higher dimensions (k ~ 20) is not enough (too approximated)
- Numerical sampling techniques (e.g. **Monte Carlo**) are approximate by definition, so lot of samples are required.
- Sampling algorithm can get stuck into a local maximum and never be able to explore all the parameter space (e.g. Eggbox). Lot of adhoc improvements required, depending on the application.
- Computational time and number of samples to be used can be a real problem. Big limitations to complex fitting problems.

The basic algorithm

Nested Sampling Monte Carlo (NSMC) Skilling 2004

• For k free parameters to estimate, Bayesian Evidence is a k-dimensional integral

$$\mathcal{E} = \int \mathcal{L}(\boldsymbol{\theta}) \boldsymbol{\pi}(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

Bayes' Theorem

$$p\left(\boldsymbol{\theta}\right) = \frac{\mathcal{L}\left(\boldsymbol{\theta}\right)\pi\left(\boldsymbol{\theta}\right)}{\mathcal{E}}$$

• Convert evidence into a one-dimensional integral

$$\mathcal{E} = \int_{0}^{1} \mathcal{L}(X) \, dX$$
$$dX = \pi(\theta) \, d\theta \quad \text{small portion of prior volume (prior mass)}$$

Bayesian Evidence

 $\mathcal{E} = \int_{0}^{1} \mathcal{L}\left(X\right) dX$

Bayesian Evidence

 $\mathcal{E} = \int_{0}^{1} \mathcal{L}\left(X\right) dX$

• **ADVANTAGES** with respect to Markov chain Monte Carlo:

- Typically ~100 times fewer samples than thermodynamic integration to calculate evidence to same accuracy + error bar
- 2. **Direct** solution to model comparison problems
- No troubles with phase changes in likelihood (multi modal distributions)

A&A 571, A71 (2014) DOI: 10.1051/0004-6361/201424181 © ESO 2014

DIAMONDS: A new Bayesian nested sampling tool*

Application to peak bagging of solar-like oscillations

E. Corsaro and J. De Ridder

Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium e-mail: emncorsaro@gmail.com, joris.deridder@ster.kuleuven.be

Received 11 May 2014 / Accepted 8 August 2014

- C++11 code for **inference** problems in a Bayesian framework:
 - Dataset to fit
 - Model to test
 - Estimate the free parameters of the model

- C++11 code for **inference** problems in a Bayesian framework:
 - Dataset to fit (Likelihood)
 - Model to test (**Prior**)
 - Estimate the free parameters of the model (**Posterior**)

Likelihood Prior Posterior

Working scheme

What makes **DIAMONDS** so appealing? (1)

- Basic core **public** available (now released v. 1.1) with usable demos
- General for **any** application involving Bayesian Inference
- Bayesian evidence (essential for model comparison problems) is a direct output
- Very powerful in identifying multiple (degenerate) solutions, also in highdimensions
- Code implementation is **flexible** and easy to upgrade (replace modules, add new ones)
- Different types of **prior** distributions and likelihood functions already provided
- Attracted more than **50 users** from many world's institutions and different fields of physics

What makes **DIAMONDS** so appealing? (2)

- **Overtakes** other existing MCMC, NSMC codes (e.g. MultiNest, POLYCHORD)
- Foreseen upgrade with full multi-core parallelization by early 2017 (v. 2.0)

Year

Prior distributions

Corsaro & De Ridder 2014 A&A, 571, 71

Prior distributions

Corsaro & De Ridder 2014 A&A, 571, 71

Prior distributions

Super Gaussian

Corsaro & De Ridder 2014 A&A, 571, 71

Corsaro & De Ridder 2014 A&A, 571, 71

Corsaro & De Ridder 2014 A&A, 571, 71

Corsaro & De Ridder 2014 A&A, 571, 71

Gaussian Shell Function

N = 3100 Samples

Examples for real applications

Scanning Electron Microscopy (SEM) e.g. detecting the position of individual atoms

Examples for real applications

Detecting signal from a noisy background e.g. detecting SZ effect in CBR maps

Examples for real applications

Fitting very complex time-series shapes e.g. spot modeling for differential rotation in active stars

KIC7765135

Asteroseismology
Why do we need **DIAMONDS**?

- 1. Tackling **high-dimensional** and/or **multi-modal** fitting problems at high speed (otherwise very difficult, if not impossible, to solve with standard methods and available computational power)
- 2. Easy and direct solution to model comparison problems

For example? Asteroseismology!

but also... exoplanetary science, solar physics, cosmology, high-energy physics, etc.

What is Asteroseismology?

The analysis of stellar oscillations to probe stellar structure, dynamics, and evolution

- The most powerful available approach to look inside the stars!
- Our main example: **the Sun** (helioseismology)
- Many stars oscillate similarly to the Sun (solar-like): about 40,000 known to date and growing every year

Solar-like oscillators

- Spectral types F-K, can be observed at galactic scale distances (up to about 10 kpc)
- The most common, hence constitute a statistically useful sample for population studies
- Often host Earth-sized planets and offer extended habitability zones, hence crucial to study the conditions for life
- Cover all epochs of star formation in the different regions of the Galaxy (thin and thick disks, and the halo)
- Show narrow spectral lines that provide more accurate and precise element abundances than for other stars.

Solar-like oscillations

- Acoustic waves from surface convection in low- and intermediate-mass stars (*p* modes)
- Produce tiny brightness variations (10⁻⁶ - 10⁻³ mag)
- Each oscillation mode can be identified by three quantum numbers

Beck & Kallinger S&W 2013

Time-series analysis

Global parameters

Global parameters

Fine-structure of p modes

Why do we need this?

Constrain and understand to the best level possible + Spectroscopy

Physical Properties & Internal Structure

Mass, Radius to few percent precision

Position of BCZ, Hell zone Evolutionary stage

Metallicity effect

- Problem 1: big dataset + fitting numerous oscillation modes (peaks) per star (can be more than 100)
- **Problem 2**: testing if a peak is real or not (noise)

Problem 1 Solving a high-dimensional fitting problem

High-dimensional Model

About 180 free parameters! Computational time increases a lot

Frequency

Frequency

Frequency

Corsaro & De Ridder 2014 A&A, 571, 71

Results

Multi-modal inference problem on 9 consecutive radial orders (27 peaks)

Only 9 free parameters!

Corsaro & De Ridder 2014 A&A, 571, 71

Comparison

Red: uni-modal fit **Blue**: multi-modal fit

Corsaro & De Ridder 2014 A&A, 571, 71

Comparison

Red: uni-modal fit **Blue**: multi-modal fit

Problem 2 Test the significance of an oscillation peak

Peak Significance Criterion

Peak significance

Peak significance

 $\mathcal{M}_{\ell=2}$ Both ℓ = 2 and ℓ = 0

Peak significance

 $\mathcal{M}_{\ell=2}$ Both ℓ = 2 and ℓ = 0

Bayesian Evidence

Oscillations in red giant stars

RGB oscillations

© Thomas Kallinger

p modes couple with gravity modes (*g* modes) from radiative interior (mixed modes)

RGB oscillations

Many oscillation modes per star (up to about 100)!

Results on 19 RGB stars

Corsaro, De Ridder, García 2015 A&A, 579, 83

- **1618** oscillation modes extracted
- 612 peaks tested (38%) with Bayesian model comparison
- **380** peaks detected (62% of tested peaks)
- Internal rotation detected in **14** stars

Corsaro, De Ridder, García 2015 A&A, 579, 83

Acoustic glitches

Corsaro, De Ridder, García 2015 A&A, 578, 76

Signature of Hell zone

Corsaro, De Ridder, García 2015 A&A, 578, 76

- The position of HeII zone is constrained up to 2% precision!
- Amplitudes up to 6%, can give estimate of He abundance in convective envelope

Evolution of Hell zone

Corsaro, De Ridder, García 2015 A&A, 578, 76

Ongoing research

 Analysis of granulation and oscillation properties of the Sun with GOLF & VIRGO + correlation with magnetic activity

• Full characterization of red giant stars in NASA Kepler open clusters NGC 6791, NGC 6811, NGC 6819

 Analysis of solar oscillations reflected from Neptune's atmosphere, observed by K2

KU LEUVEN	Contact Who's who Organisational chart Libraries Toledo
	EDUCATION RESEARCH ADMISSIONS LIVING IN LEUVEN ABOUT KU LEUVEN
The DIAMONDS code	Institute of Astronomy
Download	Authors
Package Content	• Working Scheme
Installation Guide	
User Guide Manual	
Publications	
Events	
Statistics	Authors
Logo	Enrico Corsaro emncorsaro(at)gmail.com
	Joris De Ridder

https://fys.kuleuven.be/ster/Software/Diamonds/

joris.deridder(at)ster.kuleuven.be

https://fys.kuleuven.be/ster/Software/Diamonds/
Thank you!