Asteroseismology, Red Giants, and Eclipsing Binaries

[New] [Apache

Patrick Gaulme [New Mexico State University, USA] [Apache Point Observatory, NM, USA]

Asteroseismology @ NMSU

- □ Asteroseismology: Jason Jackiewicz, Patrick Gaulme
- □ 3.5-m telescope at APO with HR echelle spectrometer, SDSS
- Asteroseismology
 - ♦ Red giant in eclipsing binaries from Kepler
 - ♦ 200K NASA grant
 - ♦ 2 PhD students: M. Rawls & J. McKeever
- Giant Planet seismology: JOVIAL/JIVE
 - ♦ Instrument project (NASA, ANR)
 - ♦ OCA, NMSU, IAS, NMTech
 - ♦ 2 NMSU PhD students: E. Dederick, T. Underwood

Outline

I. Binaries to test asteroseismology

II. Asteroseismology to understand binaries

Part 1:

Calibrating Asteroseismology with Red Giants in Eclipsing Binaries

Asteroseismology of Solar-like Stars

- Masses, Radii, Ages
- □ CoRoT, Kepler, TESS, PLATO

Asteroseismic Scaling Laws

Oscillation spectrum

Ensemble asteroseismology

$$\frac{R}{R_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$$
$$\frac{M}{M_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$

Asteroseismic Scaling Laws

Tens of thousands of oscillation spectra, mostly RG

- Theory/simulations
 - ♦ Stello et al. 2009: 3% agreement on R
 - ♦ White et al. 2011: $\Delta v \alpha \sqrt{\langle \rho \rangle}$ up to 5%
 - ♦ Huber et al. 2011: evolutionary tracks, few percent accuracy.
- R measurements independent from seismology: accurate to few percent
 - ♦ Huber 2012, Silva-Aguirre 2012, Baines 2014
 - Need for accurate mass measurements

Eclipsing Binaries

 \Box Eclipses' light curve: R₁/a, R₂/a, T2/T₁, e, i, limb darkening

Eclipsing Binaries

Radial velocities of double-line spectroscopic binaries (SB2):
 M₁ sin *i*, M₂ sin *i*, a, e

Red Giants in Eclipsing Binaries

- Hekker 2010, Frandsen
 2013, Brogaart 2016
 - Dynamical M,R slightly larger than asteroseismic ² for 2 systems
- Sample of 17 RGs in EBs monitored for 4 years at APO
 - ➢ 9 SB2 with oscillations
 - 4 SB1 with oscillations
 - 4 SB2 with no oscillations

Red Giants in Eclipsing Binaries

Example of Kepler light-curves and APO radial velocity curves

Precision on masses ≈3% and radii ≈1%

Nature of the Systems

- □ 18 systems (include Frandsen's). 15 RGB, 3 RC.
- □ F/G-type companion for SB2
- □ 1 double red giant (rare!) Rawls et al. 2016
- □ M-type companion for 3 SB1
 - Test bottom main sequence, one system with M=0.27, R=0.28

Atmospheric Parameters

Testing Asteroseismic Scalings

Asteroseismology systematically overestimate M,R

- ➢ 16% for M, 6% for R
- > Depending on reference solar v_{max} up to 25 and 10%

Testing Asteroseismic Scalings

□ No dependence with P_{orb}
 ◇ Binarity does not seem to have influence

- □ No dependence as function of v_{max}
- No dependence as function of evolutionary type (RGB vs. RC)
- □ T_{eff} influence
 ♦ if lower than 100K
 ≈3% mass decrease

Conclusion Part I

- □ Mass overestimation ⇔ age underestimation
- □ Galactic archeology, population studies
 - α-enhanced giants (Chiappini 2015, Martig 2015): appear young because of large asteroseismic masses.
 - Galaxy survey (Sharma 2016): models "overestimate" number of low mass star wrt asteroseismic results

Part 2: Asteroseismology to help understand binaries

Among 30 red giants in eclipsing binaries, 10 do not display "solar-like" oscillations

□ Some oscillate nicely (about 15)

KIC 5866138

□ ... some weakly (about 5)

KIC 5308778

□ ... some don't at all (10)

Some display negligible stellar variability (about 15)

□ Some do

KIC 8430105

30 Red Giants in Eclipsing binaries (Hekker et al. 2010, Gaulme et al. 2013 & 2014)

15 with nice oscillation patterns
 5 with confused oscillation patterns
 10 with no oscillations at all

> 15 with significant variability
(spots)

Orbital Period vs. Activity

Spots on the giant, because the companion represents at maximum 10 % of total luminosity

Orbital Period vs. Oscillations

Orbital Parameters vs. Oscillations & Activity

 $\Box \quad [R1+R2]/a < 12 \% always oscillations$

- $\Box \quad [R1+R2]/a > 18 \% \text{ no oscillations}$
- □ Non-oscillating RGs:
 - ➢ 10 of the 13 with shortest [R1+R2]/a
 - 9 of the 12 with smallest eccentricities

Resonance vs. Activity

□ Non-oscillating RGs:

- ➢ 8 of the 9 with synchronized orbit and variability
- 9 of the 12 with shortest orbits

Orbital Period vs. Mode Amplitude

Based on expected oscillation amplitudes from Corsaro et al. 2013.

Evidence of mode depletion for systems with:

- \diamond Short orbital periods
- ♦ Circularized and synchronized orbits
- ♦ Spotty surfaces

Orbital Period vs. Mode Height & Width

Mode lifetime reduced at shorter periods, hence small heights
 Excitation is present but damping is very strong

Oscillation excitation

Systems with no modes display granulation
 Three RGs with same magnitudes, one with no modes (black line)

Oscillation excitation

Comparison between expected (Kallinger et al. 2014) and actual granulation
 Those with regular modes: regular granulation

Oscillation excitation

Comparison between expected actual granulation

Those with damped modes: damped granulation

Conclusion Part II (1)

- One third of RGs in EBs do not display oscillations
- RGs with damped or no oscillations display spotty surfaces
- RGs with damped or no oscillations are circularized and synchronized
- Excitation mechanism is always present but modes are damped
- Granulation is weaker than expected

Conclusion Part II (2)

- Chaplin 2011: when activity, lower modes. But Huber et al. 2011 don't see that
- Derekas observed the absence of oscillations in triple system
- Active RG, when spinning faster. Observed with Zeeman Doppler Imaging (ZDI)
- Here: tides lock systems. Entails RG fast rotation, B field, & activity.
 - P-modes absorbed in spots
 - Convection looks affected too

General Conclusion

□ RG in EB are excellent benchmarks for testing asteroseismology

- ♦ We observe M and R overestimate (16 and 6%)
- ♦ We need more systems (about 10 more RG under study)
- ♦ We need other evolutionary stages. K2 opens opportunities
- ✤ Future benchmarks for TESS PLATO, from catalogs and GAIA
- Tides have influence on oscillations and surface
 - \diamond Oscillation suppression, spots
 - ♦ Circularization, synchronization
 - \diamond Fast rotation, magnetic fields
 - ♦ Short-lived modes, damped convection
- Our papers: Gaulme et al. 2013 (ApJ 767,82), Gaulme et al. 2014 (ApJ 785, 5), Rawls et al. 2016 (ApJ 818, 108), Gaulme et al. 2016 (ApJ, in process, soon on Arxiv).