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Dark Matter – successes and failures 

• Dark matter explains adequately characteristics of the large scale structure of 
the Universe (cosmic WEB) as, for instance, the matter power spectrum in a 
wide range of scales. 

 

• Without DM is difficult to reach the non-linear regime of growth of primordial 
fluctuations in an adequate timescale to explain the formation of galaxies 

 

• Abundance of DM requires extensions of the Standard Model . However, no 
evidence for supersymmetry in LHC. 

 

• Tension among some direct detection experiments (DAMA/LIBRA, CoGent, 
CRESS-II versus XENON 100) – only SSDM 

 

• Difficulties with the predicted number of satellites and the central density 
profile of dark halos 



Some Alternatives to DM 
(Oliveira, de Freitas Pacheco & Reinisch, Gen.Rel.&Grav. 47,#12,2015) 

RGGR theory  better than MOND?   
       (Shapiro, Sola & Stefancic 2005) 
 
 
 
         Best model – fixed parameters 
 
 
 
 
Fixed constraint:  (8.3kpc)= 44 Mpc-2 
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RGGR parameter   V =226 km/s       no universality of    
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          DM as a Bose-Einstein Condensate (BEC) 
 
All particles are in the fundamental state - Hartree approximation: 
 
Single particle wave function     
 
Effective potential   
 
 
N     (Thomas-Fermi approximation)   
 
With   
 
Best  model :  
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Comparison with a canonical NFW halo model 
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Current Scenario for SSDM 

• Dark matter particles decouple when non-relativistic. Chemical 
decoupling occurs at T ~ 25 m  , fixing the relic abundance. 

 

• After chemical decoupling, DM particles still interact with SM 
particles (mainly leptons) – this maintains their temperature close 
to the cosmic plasma temperature. 

 

• Kinetic decoupling occurs around  T ~ 20-30 MeV and depends on 
cross-sections fixed by weak interactions (“fingerprints” in  small 
scales of the linear matter power spectrum?) 

 

• After kinetic decoupling, the evolution is described by the Vlasov-
Einstein equation. 



Lee-Weinberg Bound 
- thermal particles - 

Chemical decoupling occurs when  
 
 
Weak interaction annihilation rate    
 
 
From these equations  
 
 
DM relic abundance                                                                Use  
 
 
To obtain                                                                     
 
                                                                                              
                                                                                          m   23 GeV 
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The Vlasov-Einstein Equation 
The one-particle distribution function obeys the Vlasov-Einstein equation 
 
 
 
 
The particle density                                and the matter tensor  
 
 
Define the tensor                                                             with   
 
 
For a flat FRW cosmology, the VE equation reduces to  
 
 
General solution                        implying   
  
 
with the definition                                     
    
                       (see details in Piattella, Fabris  & de Freitas Pacheco  , JCAP 11, 002, 2013) 
  

 
 

0 0j j m n

mnj j

f f f
p p p p

t x p

  
  

  

3n f d p 
3

0

ik i k d p
T f g p p

p
 

3

2

1 i k
ik i k p p

V V f d p
n E

   
i i

i dx p
V a

dt E
 

0
f f

Hp
t p

 
 

 

( )f f ap
4

2

2 13 3 2 2 2

0

4 4
( )

3 ( )
D

x dx
n I and f x

a na x m a

 




 


0

( ) n

nI f x x dx


 



Define the phase-space indicator                                                                       NR regime 
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In the non-relativistic regime, the phase-
space density of DM remains constant 
 
(Peirani & de Freitas Pacheco, PRD 77,064023, 2008) 

Still relativistic 

One expects that even in the linear 
regime the phase density will remain 
constant up to violent relaxation or 
phase mixing become operative in the 
non-linear phase  

A Fermi-Dirac distribution was assumed to 
compute the graphic 



The linear regime 

The perturbed metric (Newtonian gauge)  
 
The perturbed distribution function  
 
Integration of the DF over momenta  
 
The perturbed bulk velocity requires some attention 
 
 
                                                                                                     The term including   f 0  does not  
                                                                                                      contribute due to isotropy . 
                                                                                                      The bulk velocity is a pure first-order  
                                                                                                      quantity, since it depends on  f 1 
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Replace the perturbed DF into the VE equation and integrate over momenta 
 
 
 
where                               for non relativistic particles    
 
Multiply the VE equation by   p j/E  and integrate over momenta to obtain 
 
 
 
Take the divergence of this equation and combine with equation for the density contrast 
 
 
 
 
The metric potentials are 
derived from the linearized 
Einstein equations 
Absence of anisotropic 
stresses   = -  
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Next step – take Fourier components , consider sub-horizon scales  (k >> Ha)  and  
 
isotropy such as                                  - then the density contrast evolves as 
 
 
 
 
 
                                                                                            Gr       Gravitational instability if  
 
 
 
                                                                                                        Jeans mass for dark halos 
 
 
 
                                                                                                         No halos can be formed  
                                                                                                         with masses less than the 
                                                                                                          Jeans mass    
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 Are there other particle model alternatives to SSDM? 

 

 

Scalar, Vector and Fermionic particle models were considered by (Mambrini et al. 

arXiv:1508.06635) 

 

 

 

 

 

 

 

 

 

 

            Standard model decay products analyzed for 16 coupling models 
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Observational Constraints 

• Proton-Antiproton spectrum up to 450GeV (AMS-02)  

 

• Spectral lines in X and  rays region (data from space satellites)  

 

• Neutrino data (Ice Cube, Amanda, Super-K) 

 

• Continuous -ray spectrum 

 

• Resulting limits -  scalar DM    m < 100 keV 

                                      vector DM   m < 10 MeV 

                                      fermionic DM   m < 100 MeV 

                                       



Radiation Effects 

Perturbed metric      
 
                                            (where   is now the conformal time)  
 
The perturbation is written in terms of the inverse Fourier transform  
 
 
 
h and  are scalars corresponding to the trace and the traceless parts of the perturbation 
 
Adopt the same procedure as before in order to obtain finally 
 
 
 
 
                                     (derivatives with respect to the conformal time) 
 
See Piattella et al. arXiv: 1507.00982 
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                      The Code for Anisotropies in the Microwave Background (CAMB) 
   
   CAMB  modified to include velocity dispersion effects  
 
    Solutions depend on the initial condition of the dispersion velocity 
 
 
 
 
Supersymmetric particle    neutralino                                
 
 
 
Using these relations   
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             Constraint imposed by CMB angular power spectrum     2 < 10-9 



Linear matter power spectrum 



Comparison with the linear matter power spectrum generated by WDM 
 
                    2 =10-15   m = 3.3 keV              2 = 10-14  m = 1.4 keV 



Linear matter power spectrum – radiation – dark matter interaction  (Boehm et al. 2014) 
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Quasi-Cold DM vs WDM or IDM 

• Velocity dispersion effects mimic WDM or IDM effects in the linear power spectrum 
of matter ( 2 = 10-15   m = 3.3 keV) 

 

• Effects are of different nature – WDM  “free streaming” , IDM  “collisional 
damping  while velocity dispersion effects are similar to “pressure” effects 

 

• Supersymmetric  particles originated from thermal equilibrium are unable to 
produce such a value of  2 . A non thermal origin is required 

 

• Particles are created or become non-relativistic  at the redshift defining the value 
of  2 that is 
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The mass of non-thermal DM 
The particle density and the velocity dispersion are derived from the distribution function 
 
 
 
 
 
 
 
                         Then                                             
 
 
To eliminate  p0  use the DM abundance  
 
 
 
To obtain finally   
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Late Forming Dark Matter 

• First proposed by  Das & Weiner (Phys. Rev. D84, 123511, 2011) 

 

• Scalar field rolls to a metastable vacuum state and oscillates, forming DM particles with 
mass  M = V’’(0)  

 

• Revised version – scalar field rolls to its true vacuum, oscillates and decays into DM 
particles                                                                                            

                                                                                                                  Field dynamics 

 

•                                        

•                                                                                                           Toy model potential 
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Left – Evolution of the field amplitude as a function of time – minimum is reached at 

x0 = 20.7245 

 

Right – Evolution of the field kinetic energy – at minimum, W = 0.877V0 



Black  - K = 0 
Red – K = 0.3 
Blue – K = 5 

When oscillations begin, particles are 
produced and a new damping factor 
must be included in the field 
equation  
 
 
 
Redefine variables to have a 
dimensionless  equation 
 
 
 
 
 
 
 
 
When K  4 decay rate is faster than 
the expansion rate and the kinetic 
energy is rapidly converted into 
particles  
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Evolution of the energy densities of field (black curve) and dark matter (red curve) 
 
 
 
Conversion efficiencies 
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The kinetic energy of the oscillating field  at the potential minimum   
 
 
 
 
 
DM energy density at the transition point  
 
 
Consistency demands that the radiation energy density be larger  
 
 
 
 
 
Amplitude of the potential   
 
 
Amplitude required for the inflaton   1015 GeV 
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Predicted integrated mass spectrum of halos 



Summary 

• Velocity dispersion  effects due to DM particles issued from SS models fix the 
minimum mass scale of halos, which is  of the order of  10-6 Mo 

 

• Velocity dispersion  effects comparable to those produced by WDM or IDM 
can be mimicked in a “late forming scenario”, in which ~ keV DM particles 
appear around z ~ 107  (just after nucleosynthesis) 

 

• DM particles with masses around keV introduce a cutoff in the linear power 
spectrum of matter able to reduce the number of low mass halos and 
alleviate the problem of satellites 

 

• The vacuum state of the original scalar field could be eventually associated 
with the “cosmological constant” – in this case, it would provide an 
explanation for the origin of both components of the dark sector 


