The Interstellar Extinction Law in the Near- and Mid-Infrared Based on the APOGEE Spectroscopic Survey

Biwei Jiang bjiang@bnu.edu.cn Beijing Normal University, China

Collaborators: Mengyao Xue, Jian Gao, Shu Wang, Aigen Li

- 1. A Precise Determination of the Mid-Infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey
 - Mengyao Xue, B. W. Jiang, Jian Gao, Jiaming Liu, Shu Wang, and Aigen Li
 - 2016, ApJS, in proof
- 2. Universality of the Near-infrared Extinction Law Based on the Apogee Survey
 - Shu Wang and B. W. Jiang
 - 2014, ApJL 788, L12

Preface

眼中有尘心无尘,除却雾霾无尘埃 ! Young stars are born out of dust ...

Li et al. 2015, Lessons from the Local Group

$$A_{\lambda} = -2.5 \log \frac{F_{\nu}}{F_{\nu}^{0}} = 1.086 N_{d} Q_{e}(\lambda, a, \text{shape}) \sigma_{d}$$
$$N_{d} = \int n_{d} ds$$
$$E(B - V) \equiv (B - V)_{\text{observed}} - (B - V)_{\text{intrinsic}}$$
$$R_{V} \equiv \frac{A_{V}}{E(B - V)}$$

Outline

- Interstellar extinction law in the infrared
- Method based on the APOGEE spectroscopic survey
- Result: mean
 - Near-infrared
 - Mid-infrared
- Result: variation
 - Near-infrared
 - Mid-infrared
- Dust models for the infrared extinction curve

Interstellar Extinction Law

- Variation of interstellar extinction with wavelength
- Continuum extinction
 - Decreasing with wavelength
 - Steep rise to the UV range
- Spectral features
 - 2175A bump
 - 9.7um and 18um silicate features
 - Some DIBs
- In the infrared
 - Much weaker than V/UV

Infrared Extinction Law

- Power law, 1-7 μm , $A_{\lambda} \propto \! \lambda^{\text{-}\alpha}$
 - Index, α~1.7
- \bullet Silicate spectral features around 10 μm and 20 μm

- Much flatter than the model derived from the UV/V extinction law in the 3-8um range
- Lack the dip around 7um predicted by the classical dust model
- Dispersion between works

Uncertainty from photometric method

- Impurity of the sample
 - Selection of red giants and red clump stars
 - Contamination by AGB stars and YSOs
- Dispersion of the intrinsic colors
 - Red clump stars, $\Delta C_{JKs}^0 \sim 0.1 \text{ mag}$
 - Red giants, $\Delta C_{JKs}^0 \sim 0.2 \text{ mag}$

2MASS + Spitzer/GIMPLSE

Source selection

- Color indexes based on photometry
- Red clump
- Red giant

Gao, Jiang & Li 2009

Method

- Linear fitting of observed color respective to J-Ks
- Convert to relative extinction
- Color ratio instead of colorexcess ratio

$$k_{\lambda} = \frac{E(K_{S} - \lambda)}{E(J - K_{S})} = \frac{(K_{S} - \lambda) - (K_{S} - \lambda)_{0}}{(J - K_{S}) - (J - K_{S})_{0}} = \frac{A_{K_{S}} - A_{\lambda}}{A_{J} - A_{K_{S}}}$$
$$\frac{A_{\lambda}}{A_{K_{S}}} = 1 + k_{\lambda} (1 - \frac{A_{J}}{A_{K_{S}}})$$

New method: color-excess method with intrinsic color correction

- Selection of G-type and K-type giants by $T_{\rm eff}$, log g and Z
- Relation of intrinsic color with stellar effective temperature T_{eff}
 - Choosing nearly zero extinction stars
 - Taking the observed color as the intrinsic color
- Determination of intrinsic color from $T_{\rm eff}$
- Statistical linear fitting between color excesses

Wang & Jiang, 2014, ApJL 788, L12

The APOGEE Spectroscopic Survey

- SDSS/DR12
- >100,000 red giant stars to magnitude H=12.2
- Resolution R= $\lambda/\Delta\lambda \sim 22,500$
- Typical S/N > 100
- Stellar parameters: $\log g < 3.0$, T_{eff} , Z > -1.0
- Spectral type: A, F, G, K
- J_err <0.05 mag, Ks_err <0.05 mag
- VSCATTER < 0.3 km/s
- 63,330 stars

Mid-infrared bands

Survey	AK	IARI	WISE				Spitzer/GLIMPSE				Spitzer/MIPSGAL	
Bands	S9W	LASW	W1	W2	W3	W4	[3.6]	[4.5]	[5.8]	[8.0]	[24]	
$\lambda_{ m eff}~(\mu{ m m})$	8.23	17.61	3.35	4.60	11.56	22.09	3.55	4.49	5.73	7.87	23.68	
area	All	sky		All	sky		-10	$0.5^{\circ} < l < 1_{\odot}$	$65^{\circ}, b \cdot$	< 5°	$-68^{\circ} < l < 69^{\circ},$	$ b < 3^{\circ}$
5σ limit (mag)	7.6	5.0	16.9	16.0	11.5	8.0	15.0	14.5	12.5	12.5	7.9	
Cross radius		3″		1″			*				3"	1
No. of												25
sources \otimes	4,296	901	$154,\!842$	$154,\!845$	154,735	$154,\!793$	$15,\!058$	$15,\!307$	$15,\!251$	$15,\!071$	$3,\!045$	
APOGEE												
$\sigma_{\lambda} \ (\mathrm{mag})$	0.2	0.3		0	.1			0	.1		0.2	
No. of												
sources	1,024	108	61,734	$61,\!935$	$41,\!510$	2,008	5,411	$5,\!540$	$5,\!474$	5,502	806	
qualified												

The $C_{\lambda 1 \lambda 2}^0 - T_{eff}$ relation

- (Nearly) zero-reddening sources
 - Blue envelop in the $C_{\lambda 1 \lambda 2} T_{\rm eff}$ diagram (Ducati 2001)
 - The least extinction
 - Practice
 - In the $C_{\rm JKs} T_{\rm eff}$ diagram
- The photometric error is taken into account
 - Deviation less than 1 sigma from the blue envelop
- Fitting function
 - Exponential or quadratic

 $C_{\rm JKs}^0 = 20.285 \times \exp(\frac{-T_{\rm eff}}{1214 \rm K})$ +0.209

Comparison of C⁰_{IKs}

e 2: Comparison of $C_{\rm JK_S}^0$ in this work, Bessell & Brett (1988) and Wang & Jiang (2014)

$T_{ m eff}$	3630K	3710K	$3780 \mathrm{K}$	3820K	3980K	4080K
This work	1.21	1.15	1.10	1.07	0.97	0.91
Bessell & Brett (1988)	1.13	1.08	1.05	1.01	0.95	0.88
Wang & Jiang (2014)	1.43	1.35	1.28	1.25	1.11	1.03

$T_{ m eff}$	4320K	$4500\mathrm{K}$	4610K	4810K	4960K	
This work	0.78	0.70	0.65	0.57	0.52	
Bessell & Brett (1988)	0.82	0.74	0.68	0.63	0.58	
Wang & Jiang (2014)	0.87	0.78	0.73	0.66	0.62	

Linear fitting of color excesses

- Subtraction of the intrinsic color indexes
- Linear fitting of the color excesses $E(Ks \lambda)$ and E(J Ks)
- Exclusion of outliers by 3 sigma criterion

 Important for sources with silicate features
- Intercept
 - Nearly zero

• Conversion to
$$A_{\lambda}/A_{KS}$$
 given $\frac{A_J}{A_{KS}} = 2.72$ from $\frac{E(KS-\lambda)}{E(J-KS)}$

Result-1: Near-IR

Result-2: Mid-IR

 Table 4: The relative extinction in the mid-infrared bands and comparison with other work

	$E_{K_{\rm S}\lambda}/E_{JK_{\rm S}}$	$A_{\lambda}/A_{ m Ks}$	$A_{\lambda}/A_{ m Ks}$	$A_{\lambda}/A_{\rm Ks}$	$A_{\lambda}/A_{\rm Ks}$	$A_{\lambda}/A_{\rm Ks}$	$A_{\lambda}/A_{\rm Ks}$
		$(A_{\rm J}/A_{K_{\rm S}} = 2.72)$	$(A_{\rm J}/A_{K_{\rm S}} = 2.52)$	$(1)^{*}$	$(2)^{*}$	$(3)^{*}$	$(4)^{*}$
WISE/W1	0.238	0.591	0.638			0.621	0.600
WISE/W2	0.312	0.463	0.526			0.500	0.333
WISE/W3	0.269	0.537	0.591				0.867
WISE/W4	0.370	0.364	0.438				
AKARI/S9W	0.273	0.530	0.585				
Spitzer/[3.6]	0.260	0.553	0.605	0.63	0.56		
Spitzer/[4.5]	0.313	0.461	0.524	0.57	0.43		
Spitzer/[5.8]	0.355	0.389	0.460	0.49	0.43		
Spitzer/[8.0]	0.334	0.426	0.492	0.55	0.43		
Spitzer/[24]	0.428	0.264	0.349				

*References: (1) GJL2009; (2)Indebetouw et al. (2005); (3)Yuan et al. (2013); (4)Davenport et al. (2014).

Error analysis: Bootstrap and Monte Carlo: 20000

					0 ()			()		
	W1	[3.6]	[4.5]	W2	[5.8]	[8.0]	S9W	W3	W4	[24]
$E_{K_{\rm S}\lambda}/E_{\rm JK_{\rm S}}$	0.238	0.260	0.313	0.312	0.355	0.334	0.273	0.269	0.370	0.428
σ (LF)	2.260E-04	0.001	0.002	2.560E-04	0.001	0.001	0.009	0.001	0.004	0.016
Mean (BR)	0.238	0.260	0.313	0.312	0.355	0.334	0.274	0.269	0.371	0.428
σ (BR)	5.015E-04	0.001	0.001	5.956E-04	0.001	0.001	0.020	0.002	0.012	0.020
Mean (MC)	0.236	0.259	0.312	0.310	0.354	0.332	0.268	0.265	0.360	0.426
σ (MC)	4.592E-04	0.001	0.001	4.518E-04	0.001	0.001	0.015	0.001	0.010	0.007
Intercept	-0.013	-0.012	-0.009	-0.017	-0.014	-0.001	-0.013	-0.016	-0.036	-0.017
$\sigma~({ m LF})$	3.660E-04	0.001	0.001	4.170E-04	0.001	0.001	0.021	0.001	0.010	0.014
Mean (BR)	-0.013	-0.012	-0.009	-0.017	-0.014	-0.001	-0.013	-0.016	-0.036	-0.017
σ (BR)	1.596E-04	0.001	0.002	1.808E-04	0.001	0.001	0.006	3.873E-04	0.002	0.018
Mean (MC)	-0.012	-0.011	-0.007	-0.031	-0.012	0.001	-0.012	-0.015	-0.034	-0.015
σ (MC)	1.889E-04	0.001	0.001	1.897E-04	0.001	0.001	0.004	3.619E-04	0.003	0.008

Table 5: Results of linear fitting (LF), Bootstrap Re-sampling (BR) and Monte Carlo (MC) simulation

Variation or not?

Universality of the Near-IR Extinction Law

- $\geq E(J H)/E(J K_S) = 0.652$
- > If a star have $E(J K_S)=0.3$
 - $[E(J H)/E(J K_S)]err = 0.38$
- > If a star have $E(J K_S)=3$
 - $[E(J H)/E(J K_S)]err = 0.038$
- > At E(J K_S)=0.1
 - the error reaches 1.14
- The dispersion can be fully explained by the error
- Pearson correlation coefficient of 0.03

No apparent variation in the mid-IR with the extinction depth A_{KS}

35

Error Analysis

- Bootstrap resampling test
 - Introduced by Efron (1979)
 - Generates a large number of datasets, each with N data points randomly drawn from the original data.
 - 20000 times Bootstrap for each pair of color excess
- Monte-Carlo simulation
 - To investigate the influence of photometric error
 - A sample is selected within the photometric error of each source
 - 20000 times for each band.

The slope distribution of 20000 times Bootstrap resample test of $E(K_s-[9])/E(J-K_s)$. The red line indicates the linear fitting result

The slope $E(K_s - \lambda) / E(J - K_s)$

	W1	W2	[8.0]	[9]	W3	W4
	3.4µm	4.6µm	8.0µm	9µm	12µm	22µm
$E(K_{S}-\lambda)/E(J-K_{S})$	0.240	0.313	0.335	0.271	0.277	0.388
Bootstrap Mean	0.240	0.313	0.335	0.272	0.270	0.371
Bootstrap σ	5.253E-04	5.929E-04	0.001	0.021	0.002	0.012
Monte-Carlo Mean	0.238	0.310	0.333	0.266	0.265	0.359
Monte-Carlo σ	4.580E-04	4.518E-04	0.001	0.013	0.001	0.010
Linear fitting σ	0.030	0.033	0.051	0.159	0.060	0.075

The intercept

	W1	W2	[8.0]	[9]	W3	W4
	3.4µm	4.6µm	8.0µm	9µm	12µm	22µm
Intercept	-0.028	-0.031	-0.003	-0.019	-0.021	-0.040
Bootstrap Mean	-0.028	-0.031	-0.003	-0.019	-0.021	-0.038
Bootstrap σ	1.739E-04	1.897E-04	0.001	0.006	4.031E-04	0.002
Monte-Carlo Mean	-0.028	-0.031	-0.002	-0.017	-0.019	-0.036
Monte-Carlo σ	1.936E-04	1.897E-04	0.001	0.004	3.720E-04	0.003
Linear fitting σ	0.030	0.033	0.051	0.159	0.060	0.075

Summary

- With the stellar parameters of G- and K-type giants from the APOGEE spectroscopic survey, we precisely determined the relative extinction in the 2MASS, AKARI, WISE and Spitzer/IRAC photometric bands, consistent with the *R*v=5.5 curve except in the W4 band.
- A quite complete mid-Infrared extinction Law of the MW is derived, with the extinction at $9\mu m$, $12\mu m$, and $22\mu m$ for the first time to characterize the silicate extinction profile.
- No apparent variation is found of the infrared extinction law.
- The relations between infrared intrinsic colors and $T_{\rm eff}$ are derived for G- and K-type giants.

Dust modelling: very large grains

- Wang, Li & Jiang 2015, ApJ 811, 38
 Very large interstellar grains as evidenced by the midinfrared extinction
- Wang, Li & Jiang 2015, MNRAS 454, 569 The interstellar oxygen crisis, or where have all the oxygen atoms gone?
- Wang, Li & Jiang 2014, PSS 100, 32 Modeling the infrared interstellar extinction

Post-Doctoral Position

- <u>https://jobregister.aas.org/node/53477</u>
- Interstellar/Circumstellar Dust
- Deadline to Apply for Job: June 1, 2016

Merci Beaucoup