SIGNATURES OF MASSIVE BINARIES

FROM COLLIDING WINDS TO ZOMBIE BLACK HOLES

Astrid Lamberts

OCA, Nice, March 14, 2017

MASSIVE STARS: RARE BUT MIGHTY

Astrid Lamberts

MASSIVE STARS: RARE BUT MIGHTY

We see them coming -L=10⁴ L_{sun} -UV flux : HII bubbles - radio to X-rays trace recent star formation

They leave a remnant Neutron star or black hole -nuclear physics -strong field gravity -high energy astrophysics

They impact their environment

UV flux, winds
 → impact star formation
 Supernova/GRB: extreme
 explosions
 -chemical enrichment
 -particle acceleration: cosmic
 rays, gamma-rays

They love other massive stars binaries, clusters

Astrid Lamberts

Astrid Lamberts

(ALMOST) ALL MASSIVE STARS INTERACT

- Often ignored, poorly understood stellar evolution, galaxy formation/evolution
- More signatures than single stars Masses, radii, mass loss, compact object
- Extreme physics labs particle acceleration, shocks, relativistic outflows, strong gravity....

My goal: Understand dynamics, emission mechanisms of massive binaries Individually and globally

NO COMPACT OBJECT : STELLAR ASTROPHYSICS

Formation : 30 M_{sun} O stars UV, H α ,[OIII], reprocessed

main sequence mass transfer Circumbinary material?

wind collisions X-rays, line variability, radio, dust (*Lamberts*+11,12,17a)

collapse 1: supernova/gamma-ray burst Time domain astronomy: gamma-rays to radio Gravitational waves/neutrinos (*Lamberts*, *Daigne*, 2017b)

Astrid Lamberts

1 COMPACT OBJECT : HIGH ENERGY ASTROPHYSICS

if neutron star : gamma-ray binary from radio to TeV gamma rays (*Lamberts*+13, *Dubus*, *Lamberts*+15)

High-mass X-ray binary X-rays, radio

Common envelope phase faint transient

Collapse 2: supernova/gamma-ray burst (*Lamberts*, *Daigne*, *2017b*) Time domain, multi-messenger astronomy

Astrid Lamberts

2 COMPACT OBJECTS : GRAVITATIONAL WAVE ASTRONOMY

Billion years of inspiral Low frequency gravitational waves, double pulsars (Nobel Prize '93)

(Lamberts+2016)

Merger Higher frequency GW possible GRB, kilonova, neutrinos, other?

60 M_{sun} black hole Game over

Astrid Lamberts

CONNECTING THE DOTS

Understand dynamics, emission mechanisms of massive binaries Individually and globally

Study stellar astrophysics, high-energy astrophysics and gravitational wave astronomy

Combine high resolution hydrodynamic simulations, emission models, analytic estimates with observations

Astrid Lamberts

NUMERICAL DEVELOPMENTS

Astrid Lamberts

CONNECTING THE DOTS

1. Colliding stellar winds

Revealing the wind collision in γ^2 Velorum (*Lamberts*, *Millour* +, accepted)

2. Gamma-ray bursts X-ray flares in GRB afterglows from relativistic shock interactions (Lamberts, Daigne, submitted)

3. Gravitational wave progenitors The formation conditions of GW 150914 (*Lamberts*, *Garrison-Kimmel*, *Clausen*, *Hopkins*, *2016*)

COLLIDING STELLAR WINDS

Crucial : stellar evolution, interstellar medium but uncertain Binarity helps

Astrid Lamberts

COLLIDING WIND STRUCTURE

thermal X-rays line variability non-thermal radio infrared emission if dust

Wind structure at given distance

Astrid Lamberts

Y² VELORUM: CLOSEST WR +O BINARY

- Wolf-Rayet: more mass loss
- P=78 d
- optical/UV: detection of wind c region. (StLouis+1993; DeMarco-

Separation ~ few milli-arcse

Astrid Lamberts

SUB-MAS RESOLUTION WITH VLTI/AMBER

- Near IR interferometry
- → spatial information
- orbital solution
- brightness ratio
- angular sizes
- → separate spectra

possibility for 1st direct detection of close wind collision (see Weigelt+16 for $\eta\,{\rm Car})$

Astrid Lamberts

CONTINUUM ANALYSIS

Visibility curve : spatial extension+flux ratios

Model : 2 point-sources

extended component needed (confirms Millour+07) wind collision ?

Astrid Lamberts

GAMMA VEL: THE MOVIE

- L_{box}=16 x separation
- resolution ~ R_{sun}
- radiative cooling

Astrid Lamberts

MODEL OBSERVATIONS

Free-free - 2
$$\,\mu{
m m}$$

(Lamberts+17a)

Astrid Lamberts

COMPARISON TO OBSERVATIONS

detection wind collision region : 3-10% of continuum flux

Astrid Lamberts

CIRCUMSTELLAR ENVIRONMENTS: PATH FORWARD

interferometry + hydrodynamic simulations + emission = wind collision detection

Next: line analysis, full radiative transfer

2nd generation VLTI instruments : MATISSES/GRAVITY then E-ELT

Astrid Lamberts

CONNECTING THE DOTS

1. Colliding stellar winds Revealing the wind collision im γ^2 Velorum (*Lamberts*, *Millour et al, accepted*)

2. Gamma-ray bursts

X-ray flares in GRB afterglows from relativistic shock interactions (*Lamberts*, *Daigne*, *submitted*)

3. Gravitational wave progenitors The formation conditions of GW 150914 (*Lamberts*, *Garrison-Kimmel*, *Clausen*, *Hopkins*, *2016*)

GAMMA-RAY BURSTS

Extragalactic gamma-ray flashes ~once/day

- up to z>9 : trace early universe
- extreme physics

Prompt emission

- massive stellar collapse (long)
- neutron star merger (short)

Then afterglow

Provides host galaxy

Astrid Lamberts

AFTERGLOWS BEFORE SWIFT

X-rays -> optical -> radio

Expected flux $F \sim t^{-1}$

Non-thermal spectrum

Astrid Lamberts

t-1

HOW TO MAKE A GRB?

huge energy : $E_{iso} \sim 10^{50-55}$ erg, gamma rays \rightarrow relativistic flow $10^{14}-10^{16}$ m

Astrid Lamberts

HOME OF THE BIG MESS

AFTERGLOWS IN THE SWIFT ERA

Astrid Lamberts

EXPLAINING VARIABILITY AND DIVERSITY IN X-RAY AFTERGLOWS

• Variable external medium ?

sives too smooth variations

- Central engine (Burrows+2005, Zhang+2006)?
 - plateaus : late energy injection do delay forward shock
 - flares : late internal shocks

strong constraints on central engine

Selares very different from prompt variability

• Shock interactions within the ejecta?

HIGHLY STRUCTURED EJECTA

Forward shock into ISM/wind Shocked material piles up reverse shock forms and propagates internal shocks develop

emission ? — reverse shock interacts with internal shocks

Genet+07, Uhm+07, Hascoet+15, needs confirmation from simulations

Astrid Lamberts

RELATIVISTIC SIMULATIONS

Relativistic RAMSES (Lamberts+13) setup for GRB scales

- Γ_{max} 100 : ultra relativistic
- 1D spherical grid + moving boundaries

Uniform setup

STRATIFIED EJECTA CREATE SHOCKS

Lorentz factor profile-> complex dynamics with multiple shocks

Astrid Lamberts

BOLOMETRIC EMISSION

Astrid Lamberts

X-RAY FLARES FROM SHOCK INTERACTIONS

Astrid Lamberts

GAMMA-RAY BURSTS: PATHS FORWARDS

Shock interactions produce X-ray flares in afterglow

Next: multiwavelength model

-> microphysics of relativistic ejecta: magnetisation, particle acceleration

Similar mechanism expected in AGN jets, pulsar winds

Different GRB picture in 10 years?

- SVOM: French-Chinese GRB monitor, joint detection with
- gravitational waves : central engine
- time-domain astronomy : supernova connection, kilonova, other transients

Astrid Lamberts

CONNECTING THE DOTS

1. Colliding stellar winds Revealing the wind collision im γ^2 Velorum (*Lamberts*, *Millour et al, accepted*)

2. Gamma-ray bursts
 X-ray flares in GRB afterglows from relativistic shock interactions
 (Lamberts, Daigne, submitted)

3. Gravitational wave progenitors

The formation conditions of GW 150914 (*Lamberts*, *Garrison-Kimmel, Clausen, Hopkins, 2016*)

Astrid Lamberts

A NEW ERA IN ASTRONOMY

with important French involvement: Virgo, eLISA (~2030)

Astrid Lamberts

30 M_{SUN} BLACK HOLES!

Astrid Lamberts

Unexpected masses

How to make them?

low metallicity stars

WHERE ARE THE LOW-METALLICITY STARS?

recent star formation?

older star formation?

Astrid Lamberts

FORMING PROGENITOR OF GW150914

Low-metallicity star formation: specific conditions. Where? galaxy type When? Redshift

2 ingredients: low metallicity stars : star formation make them merge : binary evolution

LOW METALLICITY STARS

Reticulum II : <a>

Z<0.01 Z_{sun}

Astrid Lamberts

Astrid Lamberts

Massive binaries: the path to GW 150914

Galaxy mass now

LOW METALLICITY STARS: BIMODAL FORMATION

PATH TO BLACK HOLE MERGERS

- field binaries, standard evolution
- Kroupa IMF, 10⁶ binaries with $25 < M_1 < 150$
- BSE code (Hurley+2002)
- keep track of final remnants with $M_{BH1}>25 M_{BH2}>15$

Astrid Lamberts

DELAY TIME DISTRIBUTION

- Low metallicity: most massive remnants
- higher metallicity : long delay

Astrid Lamberts

Astrid Lamberts

STAR FORMATION IN DWARF GALAXIES

ASTROPHYSICS WITH GRAVITATIONAL WAVES

massive black holes : low metallicity star formation, dwarf galaxies

Compact object mergers : massive star formation / evolution

Coming: - Virgo -sensitivity : 50 events/yr -follow-up : SVOM, PTF/BlackGEM, LSST, SKA -multifrequency gravitational waves : eLISA

SUMMARY What a talk on massive binaries looks like in 2017

interferometry and simulations reveal wind collision in γ^2 Vel probing circumstellar environments

shock interactions produce X-ray flares in GRB constraints on microphysics

Massive black hole mergers preferentially trace star formation in dwarfs

GW : formation/evolution of massive binaries

Astrid Lamberts

What a talk on massive binaries may look like in 2027+

2nd gen. VLTI/E-ELT/JWST: wind structure, mass transfer, common envelope

CTA, SVOM: relativistic dynamics/high energy emission

Astrid Lamberts

Virgo/eLISA/SVOM: multifrequency/multimessenger compact mergers

COMPARISON WITH OBSERVED VISIE

Visibility -> spatial extension of system +

Additional extended component necess

Astrid Lamberts - χ^2 Velorum - Rencontres c

CONTINUUM ANALYSIS

Astrid Lamberts

CONNECTING THE DOTS

1. Colliding stellar winds

Combining hydrodynamic simulations with interferometric observations in Gamma 2 Velorum

(Lamberts, Millour et al, accepted)

2. Gamma-ray bursts

Explaining X-ray flares in GRB afterglows with relativistic shock interactions (Lamberts, Daigne, submitted)

3. Gravitational wave progenitors

The formation conditions of GW 150914 (Lamberts, Garrison-Kimmel, Clausen, Hopkins, 2016)

FLARES FROM INTERNAL SHOCKS

Complex velocity: variable Lorentz factor -> internal shocks. Emission when crossed by reverse shock

Ballistic model -> hydrodynamic validation needed

1. Colliding stellar winds

Combining hydrodynamic simulations with interferometric observations in Gamma 2 Velorum

(Lamberts, Millour et al, accepted)

2. Gamma-ray bursts

Explaining X-ray flares in GRB afterglows with relativistic shock interactions (Lamberts, Daigne, submitted)

3. Gravitational wave progenitors

The formation conditions of GW 150914 (Lamberts, Garrison-Kimmel, Clausen, Hopkins, 2016)

HYDRO SIMULATIONS WITH RAMSES

RAMSES (Teyssier+2002) solves hydro with adaptive mesh (AMR) -> great for discontinuities

- My setup: L_{box}=16 x separation, 3D
 - resolution ~ R_{sun}
 - radiative cooling
 - orbital motion

Astrid Lamberts

MASS-METALLICITY RELATION

Z increases over time

mass dependence ~constant

limited scatter but systematic uncertainties

high z, low M hard to measure

(Ma+2016 /FIRE simulations)

Astrid Lamberts

NUMERICAL DEVELOPMENTS

RAMSES (Teyssier+2002) 3D hydro+ adaptive mesh refinement (AMR)

~500 cores : Lamberts+11,12,17a

Extension to special relativity, public Lamberts+13, Dubus, Lamberts+15, Lamberts+17b

Cosmological simulations : GADGET2 Lamberts+15, Lamberts+17c

Post-processing : thermal, non-thermal emission, absorption spectra

NO COMPACT OBJECT : STELLAR ASTROPHYSICS

Formation : 30 M_{sun} O stars UV, H α ,[OIII], reprocessed

main sequence mass transfer Circumbinary material?

wind collisions X-rays, line variability, radio, dust (*Lamberts*+11,12,17a)

collapse 1: supernova/gamma-ray burst Time domain astronomy: gamma-rays to radio Gravitational waves/neutrinos (*Lamberts*, *Daigne*, 2017b)

Astrid Lamberts

SIGNATURES OF MASSIVE BINARIES

FROM COLLIDING WINDS TO ZOMBIE BLACK HOLES

Astrid Lamberts

OCA, Nice, March 14, 2017

NO COMPACT OBJECT : STELLAR ASTROPHYSICS

Formation : 30 M_{sun} O stars VLT/E-ELT/JWST

main sequence mass transfer

wind collisions X-rays, line variability, radio, dust (*Lamberts*+11,12,17a)

collapse 1: supernova/gamma-ray burst Time domain astronomy: gamma-rays to radio Gravitational waves/neutrinos (*Lamberts*, *Daigne*, 2017b)

Astrid Lamberts