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COnvection ROtation & planetary Transits

CoRoT:  
A French/European/Brazilian mission led by CNES 
Scientific Program :  
• stellar structure - asteroseismology  
• planet search - transit method 
• stellar physics 
!
Operations: 01/2007 - 10/2012  
Polar orbit 
FOV ~ 4o☐ (half after 2009) 
11.5 ≤ r-mag ≤ 16. 
Photometric precision  700 ppm/hr 
169 967 light curves   
time sampling : 512 sec or 32 sec 
  
47 284 FGKM dwarfs (based on color separation) 



NASA mission!
!
Scientific objective : detection of Earth analogs 
(transit method)!
!
Operations: 03/2009 - 05/2013 
Earth-trailing heliocentric orbit 
!
FOV ~ 105o☐ 

9 ≤ Kp-mag ≤ 15 
Photometric precision  80 ppm/hr 
!
160 000 light curves    
time sampling: 30 min or 1 min 
44 000 FG dwarfs

Kepler



Observing strategy

• CoRoT : 26 stellar fields observed with duration ranging from ~22 days 
up to 150 days 

• Kepler: 1 stellar field observed for 4 years
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Transiting exoplanets = 
comparative planetology

MassRadius

Bulk density
Mass-radius relationships of rocky exoplanets 3

Figure 1. Mass-radius diagram for planets with different bulk compositions compared to cur-
rently known low-mass exoplanets in Earth units. We divide equilibrium surface temperatures
into three domains from 500 to 1000 K; 1000 to 1500 K; and 1500 to 2000 K. While the solid
curves denote homogeneous, self-compressible solid spheres of water ice, silicate rock, and iron,
respectively, the dashed curves exhibit differentiated models of intermediate bulk compositions.

Because of the large compression ratios involved, those are substantially less than β = 1/3
in case of a homogeneous density distribution.
The mean density of a spherical planet is given by

ρ̄ =
3

4π

Mp

R3
p

, (2.5)

where, in general, mass Mp and radius Rp of planets transiting their host stars are
provided independently from each other by radial velocity and photometric observations.
We therefore employ an error propagation analysis according to
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and obtain, upon substitution of the radius-mass relationship given in eq. 2.1, the prop-
agated relative error in mean density
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as a function of the scaling law exponent β and the observational uncertainties of the mass
and radius determinations. The latter can be expressed in terms of some key observables,
namely

∆K∗

K∗
=
∆Mp

Mp
;

∆δ∗

δ∗
= 2

∆Rp

Rp
, (2.8)

whereK∗ and δ∗ denote radial velocity semi-amplitude and transit depth of the host star,
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Know the mass & density:
know the nature

(rocky, Neptune-like, giant, brown dwarf, ...)
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Planet detection - methods

Transits & radial velocity: 
Rp  + Mp ➙ρp 
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CoRoT vs ground-based 

CoRoT  
~ 600 candidates detected 
   32 planets/BD characterized   
    (with mass constraint > 3 σ)

Deleuil et al., in prep
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Parviainen, H. et al.: Transiting exoplanets from the CoRoT space mission

Fig. 11. Transit radius of CoRoT-27b as a function of age, as computed
by SET. The 68.3%, 95.5% and 99.7% confidence regions are denoted
by black, dark grey, and light grey areas respectively. The curves rep-
resent the thermal evolution of a 10.39 MJup planet with an equilibrium
temperature of 1500 K. Text labels indicate the amount of heavy ele-
ments in the planet (its core mass, in Earth masses). Dashed lines repre-
sent planetary evolution models for which 0.25% of the incoming stellar
flux is dissipated into the core of the planet, whereas plain lines do not
account for this dissipation (standard models).

The young solution can be reliably ruled out based on plane-
tary contraction models, while the older solution can explain the
measured mass density and radius for a range of planetary core
masses.

6.3. Stellar rotation period

An attempt was made to measure the stellar rotation period using
the autocorrelation function (ACF) -based method by McQuillan
et al. (2013). The analysis was carried out using a jump-corrected
version of the light curve, but no periods could be detected reli-
ably. The result is not surprising given the amount of systematics
in the light curve (see Fig. 2).

6.4. CoRoT-27b in context

CoRoT-27b’s mass places it inside the overlapping mass regime
between low-mass brown dwarfs and massive planets (Leconte
et al. 2009; Bara↵e et al. 2010). The exact nature of objects
in this mass range is not straightforward to establish, and, in-
deed, depends on the definition of a planet (see Schneider et al.
2011, for an overview). Definition by mass—whether the object
is massive enough to have sustained deuterium fusion at some
point of its history—has ambiguities, since the deuterium burn-
ing mass limit can vary from 11 to 16 MJup depending on the
object’s metal and helium content (Spiegel et al. 2011). Also,
systems exists with multiple companions likely on both sides of
the deuterium burning limit (Marcy et al. 2001). The definition
by formation history—whether the object formed by accretion or
gravitational collapse—is not without problems either, since we
have no reliable means to probe the formation history of an indi-
vidual object. However, the planet and brown dwarf populations
may show some systematic di↵erences on measurable proper-
ties, but if such di↵erences exists, more objects are required for
any groupings to become discernible.

Fig. 12. CoRoT-27b mass, period and density compared with the pop-
ulation of confirmed transiting exoplanets. Planets with masses larger
than 20 MJup and densities higher than 15 g/cm3 have been excluded.

Considering deuterium burning, CoRoT-27b’s 2� upper
mass limit exceeds the minimum deuterium burning mass limit
of 11 MJup (Spiegel et al. 2011), but is well below the conven-
tional 13 MJup limit. Thus, it is unlikely, but not completely ex-
cluded, that CoRoT-27b would have ever sustained deuterium
fusion.

Given the dearth of known massive short-period planets, any
statistical analyses are fated to be dominated by small num-
ber statistics. Keeping this in mind, massive short-period plan-
ets show a tentative preference to be found orbiting relatively
rapidly rotating stars on eccentric orbits (Bakos et al. 2011;
Southworth et al. 2009, also Fig. 14), without significant corre-
lation between planetary mass and host-star metallicity (Bakos
et al. 2011). They are also more common around binary systems
than single stars (Udry et al. 2002). We show the CoRoT-27b
mass, density and period compared with the population of tran-
siting exoplanets in Fig. 12, planetary masses and eccentricities
for massive close-in planets in Fig. 13, and the average v sin i ,
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2010). Assuming that the transit timing precision can be forced
down to 5 sec in the future, this O − C value will be reached in
45 years from now.

Turning to the evolution of the eccentricity during the cir-
cularization process, it has two consequences. First the occur-
rence of the secondary eclipse will change. The displacement
D of the secondary from phase 0.5 is given by (eqn 1 and 2
Borkovits, 2004, e.g.). The previous results of the tidal evo-
lution calculations indicated ė = −4.5 10−5 1/Myr and Ṗ =
−1.5 10−3 days/Myr. Assuming a constant ω, we have that
Ḋ = −37.56 10−5 days/Myr or Ḋ = −9.53 10−12 days/cycle.
This variation is of the same order as the previous one caused by
the decreasing semi-major axis, so it would be observable within
a century, too.

For the second effect, that is the circularization of the or-
bit, one can also consider the occurrence of a small precession
of the orbit. This effect is hardly observable, but interesting on
the theoretical side, since the transit occurs at the true anomaly
v = 90◦ − ω where ω is the argument of periastrion. The later is
also subject to variations because of theory of general relativity
but also because the tidal effects force the apsidal line to rotate.
However, this variation has a different time-scale. We thus do
not take this into account here, even if tidal forces also cause a
small precession of the orbit showing that ω̇ is not zero. So if e
decreases due to circularization, and even if ω is constant, then
at the epoch of transit the eccentric anomaly will increase and
hence the mean anomaly at transit will occur later. However, a
first estimation shows that this effect may be negligible in a ten
year timescale.

6.2. Internal structure

CoRoT-20b is a massive hot-Jupiter with a mass of 4.24 MJup and
a radius of 0.84 MJup. Given the large planetary mass, this small
size is surprising. Among Jupiter-mass planets, only HAT-P-20b
(Bakos et al., 2010) has a comparable size, i.e. 0.867 ± 0.033
RJup.

To investigate the internal structure of CoRoT-20b, we com-
puted planetary evolution models with CEPAM (Guillot &
Morel, 1995), following the description in Guillot & Havel
(2011), and Havel et al. (2011) for a planet of a total mass 4.24
MJup. We derived a time-averaged equilibrium temperature of the
planet to be Teq = 1002 ± 24 K. The results for Teq = 1000 K
are shown in Fig. 10 in terms of the planetary size as a function
of the system age. The coloured regions (green, blue, yellow) in-
dicate the constraints derived from the CESAM stellar evolution
models (Morel & Lebreton, 2008) at 1, 2, and 3σ level, respec-
tively. For preferred ages between 100 Ma and 1 Ga, we find that
CoRoT-20b should contain between 680 and 1040 M⊕ of heavy-
elements in its interior (i.e. between 50 and 77% of the total
planetary mass), at 1σ level. While this result is qualitatively in
line with the observed correlation between star metallicity and
heavy elements in the planet (e.g. Guillot et al., 2006; Miller &
Fortney, 2011, and references therein), the derived amounts are
extremely surprising. They would imply that all the heavy ele-
ments of a putative gaseous protoplanetary disk of 0.1 to 0.15 M⊙
were filtered out to form CoRoT-20b, and then that an extremely
small fraction of hydrogen and helium in that disk was accreted
by the planet. This is at odds with todays formation models (e.g.
Ida & Lin, 2004; Mordasini et al., 2009).

We investigated the possibility that changes in the atmo-
spheric model would yield more ”reasonable” values for the
planetary enrichment. As can be seen from a similar study in the
brown dwarf regime (Burrows et al., 2011), the consequences

Fig. 10. Evolution of the size of CoRoT-20b (in Jupiter units) as a func-
tion of age (in billion years), compared to constraints inferred from
CoRoT photometry, spectroscopy, radial velocimetry and stellar evo-
lution models. Green, blue and yellow regions correspond to the plan-
etary radii and ages that result from stellar evolution models matching
the inferred ρ⋆ - Teff - [Fe/H] uncertainty ellipse within 1σ, 2σ and
3σ, respectively. Planetary evolution models for a planet with a solar-
composition envelope over a central dense core of variable mass (0, 400,
800, and 1000 M⊕ as labelled) are shown as dashed lines. These mod-
els also assume that 1% of the incoming stellar irradiation is dissipated
deep into the interior of the planet.

of modified atmospheric properties are limited for objects with
the mass of CoRoT-20b (i.e. standard radii for objects of this
mass range from 1.05 to 1.20 RJup). By artificially lowering the
infrared atmospheric opacity by a factor 1000 (not shown), we
were able to decrease the 1σ upper limit to the core mass from
650 to 390 M⊕, a small change compared to huge and unphysical
decrease in the opacity.

On the other hand, one strong assumption in our study is that
heavy elements are embedded into a central core. When rela-
tively small amounts of heavy elements are considered, it is not
very important whether they are considered as being part of a
core or mixed in the envelope (e.g. Ikoma et al., 2006). However,
as shown by Baraffe et al. (2008), when 0.5 MJup of ices are
mixed in the envelope of a 1 MJup planet, its radius is smaller by
∼ 0.1 RJup than when one considers that these elements are part
of a central core. It is thus very likely that the mass of heavy el-
ements required to explain the radius of CoRoT-20b is high but
significantly smaller than considered here. Estimates based on
the Baraffe et al. (2008) calculations indicate that if mixed in the
envelope, a mass of heavy elements 2 to 3 times smaller than
estimated in Fig. 10 would explain the observed planetary size.
This would alleviate the problem of the formation of the planet,
although it would still require relatively extreme/unlikely sce-
narios.

7. Summary

In this article we presented the discovery of CoRoT-20b. The
object belongs to the population of massive planets with or-
bital semi major axes below 0.1 AU, a domain of orbital peri-
ods where low and high eccentricity systems co-exist in a nar-
row range of orbital period. We examined the tidal stability of
CoRoT-20 and found that, within the observational uncertain-
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D. Rouan et al.: Corot-23b Corot-23b an eccentric and dense hot Jupiter

Fig. 11: Comparison of the different transit planets discovered by
CoRoT (red squares) or by other experiments (yellow bowties),
as well as Corot-23b (blue diamond) in a mass/radius diagram.
Corot-23b lies on the curve that joins the densest CoRoT plan-
ets.

Fig. 12: Diagram of eccentricity vs semi-major axis of the dif-
ferent transiting planets that have no-zero eccentricity. We dis-
play with different symbols the ones discovered by CoRoT (red
squares), by other experiments (yellow bowties), and by Corot-
23b (blue diamond). The vertical line marks an arbitrary frontier
between hot and warm Jupiters.

the planet, so that de/dt is described by Eq. 17 of Matsumura
et al. (2010). We computed the evolution of e with time starting
from two situations of a rather high eccentricity (0.8 and 0.5)
just after the formation of the planet. This is illustrated in Fig.
14 where several acceptable values for Qp were considered. We
find that the damping would be fast enough to circularize the or-
bit only for the lowest initial eccentricity and the lowest value of
Qp. We conclude that, if the Corot-23 system is indeed mature
with an age, say over 5 Gyr, then the damping of the eccentric-
ity should have been slow, a condition reached as soon as Qp is
greater that 3. 105. This value appears to be well within the pau-
sible range and even at the lower bound: no unusual response of
Corot-23b to tides would then be required to explain its eccen-
tricity.

We note also that, compared to Corot-20 (Deleuil et al.
2011), the system has a larger stellar property factor (as defined
by Pätzold & Rauer 2002) by a factor of 10 and a larger Doodson
contant (as defined by Pätzold et al. 2004). The consequence
could be that the planet may get lost in the star in a time compa-
rable to the age of the system if Q∗/k2∗ is less than 107, where Q∗
is the stellar tidal energy dissipation factor and k2∗ is the stellar
Love number. This preliminary analysis will be developed in a
forthcoming paper.

Fig. 13: Corot-23b (blue dot) added on the Mpl/ M⋆vs a / Rpl
diagram proposed by Pont et al. (2011). Corot-23b appears to
lie outside the band of circularized planets.
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Fig. 14: Evolution of the eccentricity of Corot-23b with time (in
Myr) for two initial conditions (e = 0.5: solid lines and e = 0.8:
dash lines) and four different values of the tidal quality factor
Qp: 105, 3. 105, 106, and 107. The evolution of e was computed
using Eq. 17 of Matsumura et al. (2010) and the parameters of
Table 3. The horizontal blue line corresponds to the measured
eccentricity of Corot-23b.

6. Conclusions
After the discovery by the CoRoT satellite of transit-like pho-
tometric events on the star Corot-23, a planet that we called
Corot-23b was eventually confirmed using ground-based pho-
tometric and spectroscopic follow-up observations. The ampli-
tude of transits is ∆F/F ≈ 4.3 10−3 ± 0.1 10−3, as detected by
the satellite. The star, characterized with high-resolution spec-
troscopy has the spectral type G0 V and is considered to be ma-
ture, i.e. close to leaving the main sequence. The planetary mass
resulting from RV measurements is Mpl ≈ 2.8 MJup. The plane-
tary orbital period, 3.6314 days, indicates that the planet belongs
to the now classical hot Jupiter class.

What is less classical is that it features an eccentricity at the
significant level of 0.16. A second intriguing pecularity is the
density ρp = 3 g cm−3, which makes Corot-23b among the dens-
est exoplanets of this category. Those two properties clearly do
not usually pertain to that class of hot Jupiters.

We, however, show that both characteristics are not all that
extraordinary, because the density is likely the consequence of
the long duration of the planet contraction and maybe of a rather
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Fig. 9. Tidal evolution of the rotational and orbital periods.

(2009)). We first note that standard linear tidal theories (see Hut,
1981, eqn 45) allow us to determine the current rotation period
(stationary) of the planet independently of the dissipation. We
found 2.64 ± 0.13 days. To transform Q′Jup into the planet’s Q

′
p,

we have to take into account that : (i) Q′p scales with the semi-
diurnal tide period (see Ferraz-Mello et al., 2008; Matsumura
et al., 2010); and (ii) Q′p scales with R−5p (see Eggleton et al.,
1998; Ogilvie & Lin, 2004).We found that Q′p = 2.2×106. Fig. 8
shows the variation in the semi-major axis and the evolution of
the eccentricity. One can see that with the adopted dissipation
values, while the eccentricity tends toward zero, circularization
will not be achieved within the lifetime of the system.

Fig. 9 shows the evolution of the periods. The planet rota-
tion is currently in a stationary super-synchronous state, that is
the planet rotation is faster than its orbital motion. Its period in-
creases as the eccentricity decreases and synchronization is al-
most reached when the eccentricity becomes very small. The star
rotation period is currently decreasing and will equal the syn-
chronous value at some time 4 Gyr from now. However, it will
continue to decrease until it reaches the triple synchronous sta-
tionary state. The triple synchronization, however, does not seem
to be reachable within the lifetime of the star.

We note that the actual Q′ values are not known and the
values we used are only estimates found in previous studies.
Therefore, the exact timescale of the tidal processes is uncer-
tain. Furthermore, by extracting angular momentum from the
system, stellar magnetic braking may prevent the planet from
reaching a triple synchronous state and ultimately jeopardize its
survival (Bouchy et al., 2011). Simulations in which magnetic
braking was active during the whole system lifetime, following
the model proposed by Bouvier et al. (1997) and using the same
tide parameters as in the examples given above, show that the
planet will orbit to within the Roche limit in about 6 Gyr. This
result depends critically on the adopted parameters and would
required a detailed study that is well beyond the scope of the
present paper.

We also investigate the consequences of the circularization
of the planet orbit that is in the phase of rapid circularization, on
the transits occurrence.Assuming there is no other close massive
perturber in the system, two effects appear to cause TTVs: the
decrease in the orbital semi-major axis and the circularization of
the orbit. The time scale on which the orbital semi-major axis

varies is ȧ = −0.9510−5 1/Myr presently (see Fig 9). As a con-
sequence, a continuous period variation of Ṗ/P ≈ −410−12 per
cycle is expected. As we know, this linear period variation will
cause a parabolic O − C curve, and in 100 years from now the
O − C value will be only −25 seconds. This is slightly over the
3σ observation limit of CoRoT (Bean, 2009; Csizmadia et al.,
2010). Assuming that the transit timing precision can be forced
down to 5 sec in the future, this O − C value will be reached 45
years from now.

The evolution of the eccentricity during the circularization
process has two consequences. First the occurrence of the sec-
ondary eclipse will change. The displacement D of the sec-
ondary from phase 0.5 is given by (eqn 1 and 2 Borkovits, 2004,
e.g.). The previous results of the tidal evolution calculations in-
dicated that ė = −4.5 10−5 1/Myr and Ṗ = −1.5 10−3 days/Myr.
Assuming a constantω, we have that Ḋ = −37.56 10−5 days/Myr
or Ḋ = −9.53 10−12 days/cycle. This variation is of the same
order as the previous one caused by the decreasing semi-major
axis, so should be also observable within a century.

For the second effect, that is the circularization of the or-
bit, one can also consider the occurrence of a small precession
in the orbit. This effect is hardly observable, but interesting on
the theoretical side, since the transit occurs at the true anomaly
v = 90◦ −ω, where ω is the argument of periastrion. The latter is
also subject to variations caused not only by relativistic effects
but also by the tidal effects which force the apsidal line to ro-
tate. However, this variation has a different time scale. We thus
do not take this variation into account here, even if tidal forces
also cause a small precession of the orbit showing that ω̇ is not
zero. Hence, if e decreases due to circularization, and even if ω
is constant, then at the epoch of transit the eccentric anomaly
will increase and hence the mean anomaly at transit will occur
later. However, a first estimation shows that this effect may be
negligible on a ten year timescale.

6.2. Internal structure

The planet CoRoT-20b is a massive hot-Jupiter with a mass of
4.24 MJup a radius of 0.84 MJup, and an inferred density ρ =
8.87±1.1 g cm−3. A few giant planets have been already reported
that have a similar or even higher density. For example, CoRoT-
14b ρ = 7.3 ± 1.5 g cm−3 (Tingley et al., 2011), WASP-18b ρ =
8.8± 0.9 (Hellier et al., 2009; Southworth, 2010), or HAT-P-20b
ρ = 13.78 ± 1.5 g cm−3(Bakos et al., 2010). While the masses
of these planets spans a large range, from 4 up to more than
9 MJup, their radius is close to 1RJup. Given CoRoT-20b’s high
planetary mass, its small size is surprising. Among these high
density giants planets, only HAT-P-20b is of comparable size,
i.e. 0.867±0.033 RJup. The planet CoRoT-20b, as HAT-P-20b, is
thus expected to contain large amounts of heavy elements in its
interior.

To investigate the internal structure of CoRoT-20b, we com-
puted planetary evolution models with CEPAM (Guillot &
Morel, 1995), following the description in Guillot & Havel
(2011) and Havel et al. (2011) for a planet of a total mass 4.24
MJup. We derived a time-averaged equilibrium temperature of the
planet to be Teq = 1002 ± 24 K. The results for Teq = 1000K
are shown in Fig. 10 in terms of the planetary size as a function
of the system age. The colored regions (green, blue, and yellow)
indicate the constraints derived from the CESAM stellar evolu-
tion models (Morel & Lebreton, 2008) at the 1, 2, and 3σ levels,
respectively. For preferred ages between 100 Ma and 1 Ga, we
find that CoRoT-20b should contain between 680 and 1040 M⊕
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CoRoT-20b 
Mp = 4.24 ± 0.23 MJup 

Rp = 0.84 ± 0.04 RJup 

P = 9.24 days 

e = 0.56

Orbital evolution

Rouan et al., 2011

Deleuil, Bonomo. Ferraz-Mello et al., 2012
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Fig. 9. Stellar evolutionary tracks from the STAREVOL models for
masses in the range 1.30 to 1.44 M⊙ for the measured metallicity
[M/H] = −0.02, shown with the parameters derived from the observa-
tions: Teff and M1/3

⋆ /R⋆.

To determine the mass and radius of the parent star we used
the same methodology as for the two first CoRoT planets (Barge
et al. 2008; Bouchy et al. 2008), i.e. we used Teff and [M/H]
from the spectroscopic analysis and M1/3

⋆ /R⋆ from the light
curve analysis which provides a better estimate of the fundamen-
tal parameters, thanks to the good quality of the CoRoT light
curve. From a comparison with evolutionary models as shown
in Fig. 9, we can constrain the fundamental parameters of the
parent star. In this study, we mainly relied on STAREVOL (Siess
2006; Palacios, private communication) stellar evolution mod-
els to derive the stars precise parameters. We also compared
these with the results obtained using CESAM (Morel & Lebreton
2007) and we found that both stellar evolution model tracks were
in agreement. The details of the comparison between the differ-
ent models will be presented in a forthcoming paper. We find the
stellar mass to be M⋆ = 1.37 ± 0.09 M⊙ and the stellar radius
R⋆ = 1.56 ± 0.09 R⊙, with an age in the range 1.6−2.8 Gyr. This
infers a surface gravity of log g = 4.24 ± 0.07, which is in good
agreement with the spectroscopic result of log g = 4.22 ± 0.07,
and implies that the correction due to NLTE effects is indeed
relevant.

In a final step, we calculated the distance to the star. We used
the physical parameters of the star we derived and its colors to
estimate the reddening. Using the extinction law from Rieke &
Lebofsky (1985), we found the absorption AV = 0.52 ± 0.5 mag,
yielding a distance of 680 ± 160 pc. We checked that the value
of the extinction we derived is consistent with strong saturated
Na I (D1) and (D2) interstellar lines as well as reddening maps of
Schlegel et al. (1998) which give a maximum absorption towards
our target of 1 mag.

We also investigated the possibility of a physical associa-
tion between CoRoT-Exo-3 and the nearby brightest companion
at 5.6′′. Given our estimated distance to the star, the range of
possible extinction on the line of sight, and the apparent visual
magnitude of the contaminant (V = 16.46 ± 0.07) we derived
an absolute visual magnitude MV = 6.8 ± 0.5, consistent with a
K-type star. We compared the colors of the contaminant we cal-
culated from our ground-based observations and 2-MASS pho-
tometry (Table 1) with those predicted for a star of this spec-
tral type. We found that within the precision of the different
parameters, a physical association could not be excluded. In that
case, their separation would be about 3800 AU and the orbital
period of the companion would be ∼235 000 years. On the other

Table 6. CoRoT-Exo-3b parameters.

Mass (MJup) 21.66 ± 1.0
Radius (RJup) 1.01 ± 0.07
density (g cm−3) 26.4 ±5.6
log g 4.72 ± 0.07

Fig. 10. Mass-radius diagram for all transiting planets and low-mass
M stars with theoretical isochrones at 10 and 1 Gyr from Baraffe et al.
(2003) overplotted.

hand, according to the UCAC2 catalogue (Zacharias et al. 2004),
CoRoT-Exo-3 displays a proper motion while none is detected
for the companion. This non detection would hence rather favor
a background star. Given our current knowledge we can not draw
a firm conclusion about the possibility of binarity for CoRoT-
Exo-3. More complementary observations are required.

4. CoRoT-exo-3b parameters and discussion

4.1. Nature of CoRoT-exo-3b

Using the stellar properties determined in the previous section
and the characteristics of the transiting body as derived from
the transit and the radial velocity fits, we derive a mass of the
companion of Mp = 21.66 ± 1.0 MJup, a radius Rp = 1.01 ±
0.07 RJup, an inferred density of ρ = 26.4 ± 5.6 g cm−3, and a sur-
face gravity of log g = 4.72 ± 0.07 (Table 6). With such proper-
ties, CoRoT-Exo-3b clearly distinguishes itself from the regular
close-in extrasolar planet population. In a mass-radius diagram,
the position of CoRoT-Exo-3b is well inside the gap in mass be-
tween planetary and low-mass star companions (Fig. 10).

Traditionally, a planet has been defined as an object lighter
than 13 MJup, as such objects are supposed not to have an internal
nuclear source of energy (Deuterium burning). From this point
of view, CoRoT-Exo-3b is definitely a brown-dwarf. Indeed, in
this low mass range, models predict an almost constant Jupiter-
size radius (Baraffe et al. 2003). As illustrated in Fig. 10, CoRoT-
Exo-3b parameters are in good agreement with the expected
mass-radius relationship on the low-mass tail of these substel-
lar objects.

Another definition makes use of the formation scenario: a
planet is formed by core accretion of dust/ices in a protoplane-
tary disk, while a brown-dwarf is formed by collapse of a dense
molecular gas cloud. In that case, the separation between the
brown-dwarf and planet population is blurrier since a planet,
starting with a solid core, can end up with a gaseous envelope as
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Fig. 9. Stellar evolutionary tracks from the STAREVOL models for
masses in the range 1.30 to 1.44 M⊙ for the measured metallicity
[M/H] = −0.02, shown with the parameters derived from the observa-
tions: Teff and M1/3

⋆ /R⋆.

To determine the mass and radius of the parent star we used
the same methodology as for the two first CoRoT planets (Barge
et al. 2008; Bouchy et al. 2008), i.e. we used Teff and [M/H]
from the spectroscopic analysis and M1/3

⋆ /R⋆ from the light
curve analysis which provides a better estimate of the fundamen-
tal parameters, thanks to the good quality of the CoRoT light
curve. From a comparison with evolutionary models as shown
in Fig. 9, we can constrain the fundamental parameters of the
parent star. In this study, we mainly relied on STAREVOL (Siess
2006; Palacios, private communication) stellar evolution mod-
els to derive the stars precise parameters. We also compared
these with the results obtained using CESAM (Morel & Lebreton
2007) and we found that both stellar evolution model tracks were
in agreement. The details of the comparison between the differ-
ent models will be presented in a forthcoming paper. We find the
stellar mass to be M⋆ = 1.37 ± 0.09 M⊙ and the stellar radius
R⋆ = 1.56 ± 0.09 R⊙, with an age in the range 1.6−2.8 Gyr. This
infers a surface gravity of log g = 4.24 ± 0.07, which is in good
agreement with the spectroscopic result of log g = 4.22 ± 0.07,
and implies that the correction due to NLTE effects is indeed
relevant.

In a final step, we calculated the distance to the star. We used
the physical parameters of the star we derived and its colors to
estimate the reddening. Using the extinction law from Rieke &
Lebofsky (1985), we found the absorption AV = 0.52 ± 0.5 mag,
yielding a distance of 680 ± 160 pc. We checked that the value
of the extinction we derived is consistent with strong saturated
Na I (D1) and (D2) interstellar lines as well as reddening maps of
Schlegel et al. (1998) which give a maximum absorption towards
our target of 1 mag.

We also investigated the possibility of a physical associa-
tion between CoRoT-Exo-3 and the nearby brightest companion
at 5.6′′. Given our estimated distance to the star, the range of
possible extinction on the line of sight, and the apparent visual
magnitude of the contaminant (V = 16.46 ± 0.07) we derived
an absolute visual magnitude MV = 6.8 ± 0.5, consistent with a
K-type star. We compared the colors of the contaminant we cal-
culated from our ground-based observations and 2-MASS pho-
tometry (Table 1) with those predicted for a star of this spec-
tral type. We found that within the precision of the different
parameters, a physical association could not be excluded. In that
case, their separation would be about 3800 AU and the orbital
period of the companion would be ∼235 000 years. On the other

Table 6. CoRoT-Exo-3b parameters.

Mass (MJup) 21.66 ± 1.0
Radius (RJup) 1.01 ± 0.07
density (g cm−3) 26.4 ±5.6
log g 4.72 ± 0.07

Fig. 10. Mass-radius diagram for all transiting planets and low-mass
M stars with theoretical isochrones at 10 and 1 Gyr from Baraffe et al.
(2003) overplotted.

hand, according to the UCAC2 catalogue (Zacharias et al. 2004),
CoRoT-Exo-3 displays a proper motion while none is detected
for the companion. This non detection would hence rather favor
a background star. Given our current knowledge we can not draw
a firm conclusion about the possibility of binarity for CoRoT-
Exo-3. More complementary observations are required.

4. CoRoT-exo-3b parameters and discussion

4.1. Nature of CoRoT-exo-3b

Using the stellar properties determined in the previous section
and the characteristics of the transiting body as derived from
the transit and the radial velocity fits, we derive a mass of the
companion of Mp = 21.66 ± 1.0 MJup, a radius Rp = 1.01 ±
0.07 RJup, an inferred density of ρ = 26.4 ± 5.6 g cm−3, and a sur-
face gravity of log g = 4.72 ± 0.07 (Table 6). With such proper-
ties, CoRoT-Exo-3b clearly distinguishes itself from the regular
close-in extrasolar planet population. In a mass-radius diagram,
the position of CoRoT-Exo-3b is well inside the gap in mass be-
tween planetary and low-mass star companions (Fig. 10).

Traditionally, a planet has been defined as an object lighter
than 13 MJup, as such objects are supposed not to have an internal
nuclear source of energy (Deuterium burning). From this point
of view, CoRoT-Exo-3b is definitely a brown-dwarf. Indeed, in
this low mass range, models predict an almost constant Jupiter-
size radius (Baraffe et al. 2003). As illustrated in Fig. 10, CoRoT-
Exo-3b parameters are in good agreement with the expected
mass-radius relationship on the low-mass tail of these substel-
lar objects.

Another definition makes use of the formation scenario: a
planet is formed by core accretion of dust/ices in a protoplane-
tary disk, while a brown-dwarf is formed by collapse of a dense
molecular gas cloud. In that case, the separation between the
brown-dwarf and planet population is blurrier since a planet,
starting with a solid core, can end up with a gaseous envelope as
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• Rp/R★ = 0.172 (3% larger) 
•  At least 18 spots in total  
• Average of 7 spots covered per transit 
• spot size : 0.3 - 0.6 Rp 
• Temperature : 4600 to 5400 K  (R★ =5625K) 
• rise & decay ~ 30 days

Silva-Valio et al., 2009

Probing the stellar surface



Active regions on Kepler-17

Discovery and characterization of Kepler-17b 17

Fig. 11.— Left: Sequence of combined and binned transit lightcurves, with the best-fit model presented in Figure 2 and overplotted in
red. Each co-added transit corresponds to the combination of 22 individual transits that occurred at epochs modulo eight planetary orbital
periods. The lightcurves are binned by 100 seconds and they are shifted vertically for display purposes. Each combination of individual
transits allows us to increase the SNR and to demonstrate that the same spots are occulted during several consecutives transits and epochs.
The overall combination of these eight transit lightcurves gives the final curves presented in Figure 2. Occulted stellar spots are revealed
in the combined curves since the stellar rotation period is eight times the planet’s orbital period. The same spots are crossed every eight
transits at a similar orbital phase. Right: Residuals of the best-fit model subtracted from each individual combined lightcurve modulo
8. The vertical dashed lines correspond to the beginning and to the end of the transits. Five occulted stellar spots are indicated on the
residuals (A, B, C, D and E) as they appear transits after transits at phase positions expected from the stellar rotation period. This implies
that the projected spin-orbit angle, λ, is very close to 0 for this system. The combination of the residuals of the eight transit lightcurves is
similar to the total residuals plotted in Figure 2 and exhibits a symmetrical structure.

Desert et al., 2011



CoRoT-1b Ag < 0.20 
Snellen et al., 2009, Nature 

Alonso et al., 2009a A&A 

CoRoT-1b 

CoRoT-2b  
Occultation depth = 0.006 ± 0.002% 
Ag = 0.06 ± 0.06, 

Alonso et al., 2009b A&A 

CoRoT-1b

CoRoT-2b

Planet phase light curve



Hot-Jupiters are dark

Heng & Demory, 2013 A&A 



Atmosphere properties
The Astrophysical Journal Letters, 776:L25 (7pp), 2013 October 20 Demory et al.
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Figure 3. Phase curve of Kepler-7b based on Kepler Q1–Q14 data. Data are binned per 5 minutes. The Lambertian sphere (green), 1-free-band (blue) and 3-fixed-band
(red) best-fit models (see Section 3.3) are superimposed.
(A color version of this figure is available in the online journal.)

25±12◦ east of the substellar point appears. Second, the phase-
curve’s maximum is located at phase 0.61 ± 0.03, implying that
the brightest hemisphere is centered on the meridian located
41 ± 12◦ west of the substellar point. Third, the planetary flux
contribution vanishes around the transit, implying that the
“bright” area extends up to the western terminator, while its
extension to the east of the substellar point is nominal. We finally
note that the phase-curve’s amplitude of 50 ± 2 ppm converts
into an hemisphere-averaged relative brightness 74 ± 2 ×
10−4 (Equation (1)).

We longitudinally map Kepler-7b using the MCMC imple-
mentation presented in de Wit et al. (2012). This method has
been developed to map exoplanets and to mitigate the degener-
acy between the planetary brightness distribution and the system
parameters. We use two model families similar to the “beach-
ball models” introduced by Cowan et al. (2009): one using n
longitudinal bands with fixed positions on the dayside and an-
other using longitudinal bands whose positions and widths are
jump parameters in the MCMC fit. We choose the two sim-
plest models from these families: a 3-fixed-band model and
1-free-band model so as to extract Kepler-7b’s longitudinal de-
pendence of the dayside brightness as well as the extent of the
“bright” area. For both models, we compute each band’s am-
plitude from their simulated lightcurve by using a perturbed
singular value decomposition method. The corresponding me-
dian brightness maps are shown on Figure 4. The 1-free-band
model (Figure 3, blue) finds a uniformly bright longitudinal area
extending from 105 ± 12◦ west to 30 ± 12◦ east with a relative
brightness 78±4×10−4 (Figure 4, left). The 3-fixed-band model
(Figure 3, red) finds bands of relative brightness decreasing from
the west to the east with the following values: 100 to 68 and
3 ± 6 × 10−4 (Figure 4, right). We finally note that the 1-free-
band model finds a bright sector extending to the night side, due
to the sharp flux increase observed around transit (Figure 3).

4. THE ORIGIN OF KEPLER-7B’S VISIBLE FLUX

The combined information from the Spitzer and Kepler
observations of Kepler-7b strongly favor the conclusion that the

planetary phase-dependent flux variations seen in the Kepler
light curve are the result of scattered light from optically thick
clouds, whose properties change as a function of longitude.

The lack of significant thermal emission from Kepler-7b
in the Spitzer 3.6 and 4.5 µm bandpasses supports the fact
that Kepler-7b’s visible light curve is driven by reflected
light. Kepler-7b’s phase curve exhibits a westward asymmetry
suggesting, if of thermal origin, a temperature structure that
does not follow the expected temperature structure for tidally
locked hot Jupiters, which would yield an eastward shift. This
eastward shift is consistently produced from a range of general
circulation models for tidally locked hot-Jupiters forced using
various methods, including Newtonian cooling (e.g., Cooper
& Showman 2005; Showman et al. 2008; Dobbs-Dixon et al.
2010; Rauscher & Menou 2010; Heng et al. 2011a), dual-band
radiative transfer (e.g., Heng et al. 2011b; Rauscher & Menou
2012) or multi-wavelength radiative transfer (e.g., Showman
et al. 2009). Combining these results with the analytical theory
of Showman & Polvani (2011) suggests that thermal phase-
curve eastward shifts are robust outcomes of the hot-Jupiter
circulation regime. As we do not detect thermal flux from
Kepler-7b with Spitzer, the most likely conclusion is that the
westward shift in the visible phase-curve is indicative of a
variation in the cloud properties (cloud coverage, optical depth,
particle size distribution, vertical extent, composition, etc.) as a
function of longitude, governed by the planet’s wind and thermal
patterns.

We use the methods of Fortney et al. (2005, 2008) to
compute Kepler-7b’s one-dimensional temperature structure
and emission spectrum (Figure 5). The orange model is cloud-
free. The blue model uses the cloud model of Ackerman
& Marley (2001) to calculate the vertical distribution and
optical depths of Mg2SiO4 clouds. Both models assume modest
redistribution of energy, with the assumption that 1/4 of the
incident energy is lost to the un-modeled night side. The particle
size distribution in the cloud is assumed to be log-normal
with a mode of 0.5 µm at all heights. A low sedimentation
efficiency free parameter (fsed) of 0.1 is used, which suppresses
sedimentation.

5

Ag = 0.35 ± 0.02

Latham et al. 2010  

Demory et al., 2011 & 2013
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0.35 mmag

CoRoT-7 :  
K0V  
[Fe/H] =0.12 +/- 0.06 

Rp = 1.585 ± 0.064 R⊕, 

Mp = 4.73 ± 0.95 M⊕ 

Period = 0.85365 days 

Super-Earths: a new population
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TTVs: Lissauer et al. (2011), Cochran et al. (2011), Gautier et al. (2012), Fabrycky et al. (2012), 
Carter et al. (2012), Gilliland et al. (2013), Nesvorný et al.(2013), Xie (2014)

9

0 5 10 15 20
Planetary mass [M�]

0

1

2

3

4

5

P
la

ne
ta

ry
ra

di
us

[R
�

]

BC: Before CoRoT

Earth-like Neptune-like 0.1 Earth-like

0 5 10 15 20
Planetary mass [M�]

0

1

2

3

4

5

P
la

ne
ta

ry
ra

di
us

[R
�

]

With CoRoT

Earth-like Neptune-like 0.1 Earth-like CoRoT

0 5 10 15 20
Planetary mass [M�]

0

1

2

3

4

5

P
la

ne
ta

ry
ra

di
us

[R
�

]

With CoRoT & Kepler

Earth-like Neptune-like 0.1 Earth-like CoRoT Kepler

Batalha et al., 2010 
Pepe et al., 2013 
Howard et al, 2013 
Marcy et al. 2014 
Dumusque et al., 2014

S.C.C. Barros et al.: Revisiting the transits of CoRoT-7b at a lower activity level

ies. Also in our analysis we constrained the stellar age to be less
than 3 Gyr. However, if stellar age is not constrained, we find the
most probable stellar age to be 8.4+5.0

−3.3 Gyr and the derived stellar
properties are ρ∗ = 1.34 ± 0.13 ρ⊙ , R∗ = 0.873 ± 0.034 R⊙ and
M∗ = 0.865 ± 0.050 M⊙. Since the stellar parameters constrain
the transit parameters this has high impact into the derived plan-
etary parameters Rp = 1.94±0.10 R⊕, Mp = 5.62±0.75 M⊕ and
ρp = 3.81± 0.78 g/cm3. A better constrain on the stellar density
for example with asteroseismology would significantly improve
the accuracy of the planetary parameters.

7.1. Planetary density

As mentioned before, the uncertainty on the mass of CoRoT-7b
prevented constraining its bulk composition in previous works.
The lower mass estimate from Pont et al. (2011) allows a gaseous
composition. However, all the other mass estimates imply a
rocky composition (Valencia et al. 2010; Valencia 2011; Barnes
et al. 2010; Leitzinger et al. 2011) between ’Earth-like’ (33%
iron and 67% silicate mantle) and ’Mercury-like’ (63% iron and
37% silicate mantle). The new radial velocity data set allowed
a better constraint on the planetary mass. As mentioned above,
the derivation of the planetary mass is the subject of companion
papers (Haywood et al. 2014, Hatzes, A. et al. in prep). The RVs
were included in our analysis because if the system was eccentric
this would impact on the derived transit parameters. Using our
simple method to filter the activity in the RVs we found no sig-
nificant eccentricity and the derived planetary mass agrees well
with the results by Haywood et al. (2014), validating our sim-
ple method. However, to investigate the planetary composition
we adopt the planetary mass derived by Haywood et al. (2014)
Mp = 4.73 ± 0.95 M⊕who use the light curve to correct the ra-
dial velocities with the method of Aigrain et al. (2012) and with
a Gaussian process that has the same covariance properties as
the light curve. Combining the new value for radius with the
mass derived by (Haywood et al. 2014) we obtain a planetary
density of ρp = 6.59 ± 1.5 g/cm3 . This implies that CoRoT-
7b is slightly more dense than the Earth ρp = 1.19 ± 0.27 ρ⊕.
Figure 13 shows the position of CoRoT-7b on a mass-radius dia-
gram alongside other exoplanets for which mass and radius have
been measured. According to composition models by Zeng &
Sasselov (2013) for solid planets, CoRoT-7b could be composed
of silicates combined with water ice or iron. These are also in
agreement with the models of Wagner et al. (2011). In this case
any water ice is mixed with the silicates and does not imply the
planet has an atmosphere. Hence, the planetary parameters are
compatible with a rocky composition.

However, the existence of an atmosphere would introduce
a degeneracy in the models. The short orbital period and high
equilibrium temperature of the planet, Teq = 1756 ± 27 K might
be hard to reconcile will an atmosphere dominated by a volatile
gas, H2O. The stability of similar Water ocean-planet was stud-
ied by Selsis et al. (2007) that derived a lower limit for the life-
time of atmosphere of planets under the erosion of Extreme UV
and stellar wind life of the star. According to figure 4 of Sel-
sis et al. (2007) it is possible that for the derived parameters of
CoRoT-7 the atmosphere would have been eroded. However, the
contrary cannot be excluded since no upper limit on the lifetime
was presented. A similar conclusion was found by (Valencia
2011) that shows that in CoRoT-7b the age of the system is sim-
ilar to the timescale of the evaporation of water vapour. The
presence of an atmosphere will be clarified with future obser-
vations with JWST (Samuel et al. 2014). A better constrain on

Fig. 13. Mass-radius diagram for low mass planets showing the posi-
tion of CoRoT-7b with Mp = 4.73±0.95 M⊕(Haywood et al. 2014) and
the derived the radius for the selected sample, Rp = 1.585 ± 0.064 R⊕
(blue). We show the position of Earth and Venus (diamonds) for com-
parison. The solid lines show the mass and radius for planets with differ-
ent compositions according to the models of Zeng & Sasselov (2013).

the stellar and planetary parameters are needed to obtain further
insight into the composition of CoRoT-7b.

8. Discussion

We have showed that the transit-derived stellar density for each
of the CoRoT-7b observations is different from the spectroscopic
derived density, for LRa01 it is lower while for LRa06 it is
higher. The comparison between the transit derived stellar den-
sity and the spectroscopic derived value has long been used as a
blend test in transit surveys (Collier Cameron et al. 2007; Tin-
gley et al. 2011). Furthermore, it has also been used 1to estimate
the orbital eccentricity directly from the transit for some Kepler
candidates by Dawson & Johnson (2012), the technique was first
suggested by Ford et al. (2008). Recently, Kipping (2014) dis-
cusses five other effects that would lead to the transit derived
stellar density being different from the true stellar density. In
this paper we show two other effects that can lead to a underes-
timation or overestimation of the stellar density from the transit:
poor resolution of the ingress/egress time and transit spot occul-
tation events that are not resolved in a single transit.

To solve the poor resolution of the egress/ingress time we
have used the spectroscopic derived stellar properties (log g,
[Fe/H] and Teff) together with stellar models to help constrain
the transit shape. This allows to constrain the system parameters
but assumes that the other effects are negligible.
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Figure 1. Histograms of exoplanet radii, masses, and densities for the 65 exoplanets smaller than 4 Earth radii with measured masses or mass upper limits. Extreme
density outliers Kepler-37 b, Kepler-100 d, Kepler-106 c, and Kepler-131 c are excluded from the density histogram for clarity, but are included in Table 1 and the fits.
(A color version of this figure is available in the online journal.)

are smaller than 4 R⊕, and the RV-determined mass of KOI-94 b
(Weiss et al. 2013), none of which yet appear on exoplanets.org.

55 Cnc e, Corot-7 b, and GJ 1214 b have been studied exten-
sively, and we had to choose from the masses and radii reported
in various studies. For 55 Cnc e, we use MP = 8.38 ± 0.39, RP =
1.990 ± 0.084 (Endl et al. 2012; Dragomir et al. 2013b); for
Corot-7 b, we use MP = 7.42 ± 1.21, RP = 1.58 ± 0.1 (Hatzes
et al. 2011), and for GJ 1214 b, we use MP = 6.45 ± 0.91,
RP = 2.65 ± 0.09 (Carter et al. 2011). Histograms of the distri-
butions of planet radius, mass, and density are shown in Figure 1,
and the individual measurements of planet mass and radius are
listed in Table 1.

The exoplanets all have P < 100 days. This is because the
transit probability is very low for planets at long orbital periods
and because short-period planets are often favored for RV and
TTV studies.

2.1. Inclusion of Mass Non-detections

For small exoplanets, uncertainties in the mass measurements
can be of order the planet mass. Although one might advocate
for only studying planets with well-determined (>3σ ) masses,
imposing a significance criterion will bias the sample toward
more massive planets at a given radius. This bias is especially
pernicious for small planets, for which the planet-induced RV
signal can be small (∼1 m s−1) compared to the noise from stel-
lar activity (∼2 m s−1) and Poisson photon noise (∼2 m s−1). We
must include the marginal mass detections and non-detections
in order to minimize bias in planet masses at a given radius.

Marcy et al. (2014) employ a new technique for including
non-detections. They allow a negative semi-amplitude in the
Keplerian fit to the RVs and report the peak and 68th percentiles
of the posterior distribution of the semi-amplitude. The posterior
distribution peak often corresponds to a “negative” planet mass,
although the wings of the posterior distribution encompass
positive values. Although planets cannot have negative masses
in nature, random fluctuations in the RVs from noise can produce

a velocity curve that is low when it should be high, and high
when it should be low, mimicking the RV signature of a planet
180◦ out of phase with the transit-determined ephemeris. Since
the planetary ephemeris is fixed by the transit, Marcy et al.
(2014) allow these cases to be fit with a negative semi-amplitude
solution in their MCMC analysis. Reporting the peak of the
posterior distribution is statistically meaningful because there
are also cases where the fluctuations in RVs from the random
noise happen to correlate with the planetary signal, artificially
increasing the planet mass. We include non-detections (as
negative planet masses and low-significance positive planet
masses) to avoid statistical bias toward large planet masses at a
given radius.

Including literature values, which typically only report planet
mass if the planet mass is detected with high confidence, slightly
biases our sample toward higher masses at a given radius.
We include the literature values to provide a larger sample of
exoplanets.

3. THE MASS–RADIUS RELATIONS

In Figure 2, we show the measured planet densities and planet
masses for RP < 4 R⊕. In addition, we show the weighted
mean planet density and mass in bins of 0.5 R⊕. The weighted
mean densities and masses guide the eye, demonstrating how
the ensemble density and mass change with radius. We also
include the solar system planets. Examining the solar system
terrestrial planets and the weighted mean density at 1.5 R⊕,
we see that planet density increases with increasing radius up
to 1.5 R⊕. For planets between 1.0 and 1.5 R⊕, the weighted
mean density achieves a maximum at 7.6 ± 1.2 g cm−3, and
the weighted center of the bin is at 1.4 R⊕. Above 1.5 R⊕,
planet density decreases with increasing radius. The break in
the density–radius relation motivates us to explore different
empirical relations for planets smaller and larger than 1.5 R⊕.

Exoplanets smaller than 1.5 R⊕ mostly have mass uncertain-
ties of order the planet mass, except for Kepler-10 b, Kepler-36 b,

2
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Table 1
(Continued)

Name Per Mass Radius Flux1 First Ref. Mass, Radius Ref.
(days) (M⊕) (R⊕) (F⊕)

KOI-1612.01 2.465 0.48 ± 3.20 0.82 ± 0.03 1700 Borucki et al. (2011) Marcy et al. (2014)
KOI-314 b 0.669 0.06 ± 1.20 1.07 ± 0.02 3600 Borucki et al. (2011) Kipping et al. (2014)
KOI-314 c 0.669 0.06 ± 1.20 1.07 ± 0.02 3600 Borucki et al. (2011) Kipping et al. (2014)

Notes.
1 Incident stellar flux is calculated as F/F⊕ = (R⋆/R⊙)2(Teff/5778 K)4a−2

√
1/(1 − e2), where a is the semi-major axis in A.U. and e is the eccentricity. Typical

errors are 10%.
2 Mass is from Endl et al. (2012), radius is from Dragomir et al. (2013b). The density is calculated from these values.
3 Planet mass determined by TTVs of a neighboring planet.
4 Planet mass and density updated based on additional RVs.

Figure 2. Left: density vs. radius for 65 exoplanets. Gray points have RV-determined masses, orange points have TTV-determined masses, and the point size
corresponds to 1/σ (ρP). The blue squares are weighted mean densities in bins of 0.5 R⊕, with error bars representing σi /

√
Ni , where σi is the standard deviation of

the densities and Ni is the number of exoplanets in bin i. We omit the weighted mean densities below 1.0 R⊕ because the scatter in planet densities is so large that
the error bars span the range of physical densities (0–10 g cm−3). The blue diamonds indicate solar system planets. The red line is an empirical density–radius fit for
planets smaller than 1.5 R⊕, including the terrestrial solar system planets. The green line is the mass–radius relation from Seager et al. (2007) for planets of Earth
composition (67.5% MgSiO3, 32.5% Fe). The increase in planet density with radius for RP < 1.5 R⊕ is consistent with a population of rocky planets. Above 1.5 R⊕,
planet density decreases with planet radius, indicating that as planet radius increases, so does the fraction of gas. Right: mass vs. radius for 65 exoplanets. Same as left,
but the point size corresponds to 1/σ (MP) and the blue squares are the weighted mean masses in bins of 0.5R⊕, with error bars representing σi /

√
Ni , where σi is the

standard deviation of the masses and Ni is the number of exoplanets in bin i. The black line is an empirical fit to the masses and radii above 1.5 R⊕; see Equation (3).
The weighted mean masses were not used in calculating the fit. Some mass and density outliers are excluded from these plots, but are included in the fits.
(A color version of this figure is available in the online journal.)

Kepler-78 b, and Kepler-406 b (KOI-321 b). Because there are
so few planets with well-determined masses in this regime, we
include the terrestrial solar system planets (Mercury, Venus,
Earth, Mars) in a fit to the planets smaller than 1.5 R⊕. We im-
pose uncertainties of 20% in their masses and 10% in their radii
so that the solar system planets will contribute to, but not dom-
inate, the fit. Because the solar system planets appear to satisfy
a linear relation between density and radius, we choose a linear
fit to planet density versus radius. We find

ρP = 2.43 + 3.39
(

RP

R⊕

)
g cm−3. (1)

Transforming the predicted densities to masses via

MP

M⊕
=

(
ρP

ρ⊕

)(
RP

R⊕

)3

(2)

and calculating the residuals with respect to the measured planet
masses, we obtain reduced χ2 = 1.3, rms = 2.7 M⊕.

For exoplanets satisfying 1.5 ! RP/R⊕ < 4, we calculate an
empirical fit to their masses and radii, yielding

MP

M⊕
= 2.69

(
RP

R⊕

)0.93

(3)

with reduced χ2 = 3.5 and rms = 4.7 M⊕. We exclude Uranus
and Neptune from this fit because they differ from the exoplanets
in our sample. Most of the exoplanets in our sample have P < 50
days, and so we do not expect them to resemble Uranus and
Neptune, which have orbital periods of tens of thousands of
days.

The empirical density– and mass–radius relations and their
goodness of fit are summarized in Table 2. Below, we discuss
the implications of these relations for planet compositions.
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Figure 8. Planet radius vs. orbital period of the cumulative set of planet candidates as displayed in Figure 3. The points are colored to display members of one-, two-,
three-, four-, five-, and six-planet candidate systems. We note the continued paucity of giant planets at short orbital periods in multiple planet systems. 20% of the
stars cataloged have multiple planet candidates.

on the fractional cloud coverage and ranges from 175 K to 200 K
(Kaltenegger & Sasselov 2011). Others have proposed defining
the HZ in terms of insolation (the amount of stellar flux incident
on the planet surface) in order to remove the built-in assump-
tions (e.g., Bond albedo) required to compute the equilibrium
temperature (Domagal-Goldman 2012).

The star and planet properties provided in Tables 3, 4, and 5
can be used to compute the insolation and/or equilibrium
temperature under different assumptions for the purpose of
assessing questions of habitability on a case-by-case basis. Here,
we use equilibrium temperature as defined in Section 5.3 to
examine the population of planet candidates likely to be in or
near the HZ. Figure 9 shows planet radius versus equilibrium
temperature for the entire sample of planet candidates. For
reference, we include a vertical dashed line (middle) to mark
the equilibrium temperature of the Earth computed under the
same set of assumptions. With each new catalog (blue to red to
yellow points), we see a clear trend toward Earth-size planets
at Earth’s equilibrium temperature (i.e., toward the bottom left
hand corner of the diagram).

Figure 10 displays the same for the range 180 K <
Teq < 310 K. The dotted vertical lines (far left and far right)
mark the (generous) HZ boundaries (185–303 K) proposed by
Kasting (2011b). The intermediate dashed vertical line marks
the equilibrium temperature of the Earth under the same set of
assumptions. There are 46 candidates in this temperature range
(compared to 22 in the B11 catalog). Nine are super-Earth-size
(1.25 R⊕ ! RP < 2 R⊕) and one is Earth-size (RP < 1.25 R⊕).
Table 8 lists the properties for the 24 new candidates in this tem-
perature range that are plotted in Figure 10. Note that candidates
with only one transit event in the Q1–Q6 period are excluded
from this list and Figures 9 and 10.

We have paid special attention to candidates that are in this
temperature range and are also near Earth-size (see, for example,
the discussion of KOI-326, KOI-364, and KOI-1026 in the
Appendix). Figure 11 shows the relative flux time series of
KOI-2124.01, the smallest viable candidate in this temperature
range.

Table 8 contains two sets of stellar parameters. They are
identical when spectroscopic values are available (as indicated
by the flag, fTeff , in Table 3). They differ where KIC values were
updated using a parameter search in the Yonsei–Yale stellar
evolution models as described in Section 5.2. For the sample of
stars listed in Table 8, the updates almost always lead to smaller
stellar radii (and, hence, smaller and cooler planet candidates).
Improved stellar characterization is required for a more reliable
determination of the candidate location relative to the HZ.

7.4. Citizen Science: Planet Hunters Discoveries

PlanetHunters.org is a citizen science tool (Fischer et al.
2012), based on the Zooniverse platform (Lintott et al. 2008),
that enables the search for transit events in the public Kepler
data. The site serves up plots of Kepler light curves broken into
30 day segments, and, through a sequence of queries, leads the
user through a high-level classification that sorts light curves
by their qualitative properties, or appearance. Discerning eyes
flag events that resemble transits, and the goal is to have every
light curve examined by at least five independent users. Since its
launch in 2010 December, over 10 million classifications have
been made by over 100,000 users, underscoring the remarkable
enthusiasm of the general public. The site affords one not only
the opportunity to experience the scientific method but also the
possibility of experiencing the gratification of discovery. With

16

August 2014: 
395 planetary systems  
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multis ~ 40% of the candidates

Borucki et al., 2010 
Batalha et al., 2012 
Burke et al 2014

Multi-planet systems
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Fig. 10.— Twelve multiple transiting systems studied in this paper. Planets and candidates are plotted and coloured in order of orbital
period. The number beside each planet (in larger blue font, confirmed in this paper) and candidate (in smaller cyan font) is the KOI
sequence id.
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Figure 1. Histogram of the period ratios of all planet pairs detected by
the Kepler mission with no filters on planetary radius or orbital period
(http://planetquest.jpl.nasa.gov/kepler). In systems where more than two planets
are present, only the neighboring period ratios are reported. Note the highlighted
enhancement of objects immediately outside of the common (2:1 and 3:2) first-
order mean-motion resonances.
(A color version of this figure is available in the online journal.)

and validate the theory by comparison with N-body simulations.
In Section 3, we introduce dissipation into the problem and show
that tidal effects drive the system toward a quasi-stationary
state that is characterized by an irreversible drift away from
nominal resonance, where the inner planet’s orbit decays at
a rate that is faster than that expected from the direct tidal
effect, while the outer planet gains orbital energy. In Section 4,
we discuss the extension of our formalism to multi-resonant
systems. Subsequently, we conclude and discuss our results in
Section 5.

2. CONSERVATIVE DYNAMICS OF A RESONANT
PLANETARY PAIR

Resonant dynamics of planetary pairs have been studied by
numerous authors in the past (see Chapter 8 of Murray &
Dermott 1999 and references therein). This work builds on their
contributions.

Our eventual goal is to construct an analytical model for the
long-term evolution of resonant orbits under dissipative effects.
Before complicating the picture with dissipation, however, we
must first build a purely analytical model for conservative
resonant interactions. Thus, in this section, we shall derive a
simple, physically intuitive closed-form solution for the time
evolution of a resonant planetary pair. Accordingly, we shall
first work in the spirit of classical perturbation theory (e.g.,
Message 1966; Peale 1986) and employ numerical calculations
primarily as a means of confirmation.

Let us begin by considering a quasi-integrable Hamiltonian
of the form

H = Hkep + Hres + O(e2, i2), (1)

where

Hkep = −G
Mm1

2a1
− G

Mm2

2a2
(2)

is the Keplerian Hamiltonian and

Hres = −G
m1m2

a2

(
f (1)

res e1 cos(kλ2 − (k − 1)λ1 − ϖ1)

+ f (2)
res e2 cos(kλ2 − (k − 1)λ1 − ϖ2)

)
(3)

is the first-order k : k − 1, k ∈ Z resonant perturbation. Here,
the orbital elements take on their standard notation: M is the
mass of the central star and m1 and m2 are the masses of the
planets with the subscript 1 and 2 referring to the inner and
outer planets, respectively. The quantities f (1)

res and f (2)
res depend

on the semimajor axis ratio (a1/a2) only and are tabulated in the
literature (see, for example, Murray & Dermott 1999).

Because Keplerian orbital elements are not canonically con-
jugated, we revert to Poincaré variables for further calculations:

Λ = m
√

GMa, λ = N + ϖ (4)

Γ = Λ(1 −
√

1 − e2) ≈ Λ e2/2, γ = −ϖ, (5)

where N is the mean anomaly and the indexes 1, 2 are
omitted for simplicity. In terms of the Poincaré variables, the
Hamiltonians, Hkep and Hres, read:

Hkep = −G2M2m3
1

2Λ2
1

− G2M2m3
2

2Λ2
2

, (6)

Hres = −G2Mm1m
3
2

Λ2
2

(

f (1)
res

√
2Γ1

Λ1
cos(kλ2 − (k − 1)λ1 + γ1)

+ f (2)
res

√
2Γ2

Λ2
cos(kλ2 − (k − 1)λ1 + γ2)

)

. (7)

As already implied by Equation (1), we shall work to first
order in eccentricity, neglecting secular effects and resonances
of the order of greater than unity. Generally, H only constitutes
a good approximation to the true dynamics of a planetary pair
in the vicinity of a mean-motion resonance.

Because the perturbation Hres is of the order of e, we expect
that the semimajor axes can change by O(

√
e) relative to their

nominal, resonant values. Thus, we expand the terms in Hkep to
second order in δΛ = Λ − [Λ], where [Λ] is the nominal value
of Λ:

Hkep = − G2M2m3
1

2[Λ]2
1

+
G2M2m3

1

[Λ]3
1

δΛ1 − 3G2M2m3
1

2[Λ]4
1

δΛ2
1

− G2M2m3
2

2[Λ]2
2

+
G2M2m3

2

[Λ]3
2

δΛ2 − 3G2M2m3
2

2[Λ]4
2

δΛ2
2

+ O
(
δΛ3

1, δΛ3
2

)
. (8)

Consistently, we evaluate Hres in Equation (6) at [Λ], as it is
already of the order of O(e). Constant terms are dynamically
unimportant and can thus be dropped from the Hamiltonian,
implying δΛ → Λ and δΛ2 → Λ2 − 2Λ[Λ]:

Hkep = 4G2M2m3
1Λ1

[Λ1]3
+

4G2M2m3
2Λ2

[Λ2]3

− 3G2M2m3
1Λ2

1

2[Λ1]4
− 3G2M2m3

2Λ2
2

2[Λ2]4
. (9)

Note that the planetary mean motion is given by

n = dλ

dt
=

∂Hkep

∂Λ
= G2M2m3

Λ3
. (10)
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Numerous  in the low mass, long period range 

1R

1RNeptu

• CoRoT-7 b & non-transiting c & d (Queloz et al 2009) 
• Corot-20b & non-transiting c (Bouchy et al., tbs)

CoRoT-24 b & c  
• P=5.1 d 
R1=3.7 ± 0.4 R⊕  
M1 < 5.7 M⊕ 

!
• P=11.8 d 
R2=5.0 ± 0.5 R⊕ 

M2 = 28  ± 11 M⊕ 

(Alonso et al., 2014) 

Multi-planet systems with CoRoT
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TTVs: the unexpected revolution
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Characterize the mass:
the two main techniques

Radial velocity Transit Timing Variations

+ phase variations (ellipsoidal, beaming)

Spectrographs:
SOPHIE, HARPS, HARPS-N, HiReS, HET, ...
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Transit Timing Variations 

TTVs: the unexpected revolution

➙planet mass estimate 
from the photometry only! 



KOI-142b: the king of TTV
TTVs vs RVs ?

TTVs vs RVs : Who’s right ?

TTV only

md = 52.1+6.9
�7.1M�

Masuda et al. (2013)

Characterization of the KOI-94 system with TTV analysis 7

TABLE 6
Best-fit parameters obtained from TTV analysis.

Parameter Value (md = 106M⊕) Value (md = 73M⊕) Value (TTV only)
KOI-94c

mc (M⊕) 11.8+1.6
−1.5 13.9+2.7

−2.7 9.4+2.4
−2.1

ec cosϖc 0.0329+0.0047
−0.0055 0.0092+0.0264

−0.0050 0.0143+0.0080
−0.0059

ec sinϖc −0.0104+0.0038
−0.0042 −0.0031+0.0067

−0.0061 0.0045+0.0091
−0.0079

χ2
c 84 62 56

KOI-94d
md (M⊕) 106 (fixed) 73 (fixed) 52.1+6.9

−7.1

ed cosϖd 0.055+0.011
−0.014 −0.016+0.064

−0.011 −0.022+0.014
−0.011

ed sinϖd 0.012+0.011
−0.012 0.009+0.018

−0.018 0.008+0.021
−0.018

χ2
d 66 48 43

KOI-94e
me (M⊕) 15.9+2.4

−2.2 12.9+3.0
−2.3 13.0+2.5

−2.1

ee cosϖe 0.067+0.014
−0.019 −0.069+0.120

−0.018 −0.078+0.021
−0.014

ee sinϖe 0.042+0.012
−0.017 −0.022+0.032

−0.016 −0.025+0.017
−0.014

(χ2
c + χ2

d)/d.o.f 150/57 110/57 99/56
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Fig. 8.— Best-fit simulated TTVs of KOI-94d obtained by the
MCMC fit (black crosses connected with lines) with observed data
(points with error bars). The result for md = 73M⊕ is plotted
with solid lines (in O − C plot) and red points (in residual plot),
and that for md = 106M⊕ with dashed lines and pink points.

the RV best-fit value. This solution is similar to that for
md = 73M⊕ case, except that md is even smaller.

2.4. Discussion: comparison with the RV results

While the values of ed and ee obtained in our TTV
analysis are consistent with the RV values in Table 2,
the best-fit ec obtained from the TTV is ∼ 1.8σ smaller
than the RV best-fit (ec = 0.43± 0.23). Considering the
marginal detection of KOI-94c’s RV and the dynamical
stability of the system, however, the TTV value seems to
be preferred. In fact, this value is robustly constrained
by the clear TTV signal of KOI-94c; in the grid-search
performed in Section 2.2.3, we searched the region where
ec ! 0.14 to fit the TTV of this planet, but the resulting
χ2
c strongly disfavored large ec regions in both md =

106M⊕ and md = 73M⊕ cases.
The TTV values of mc and me are consistent with the

RV results, but me is constrained to a rather lower value
than the RV best-fit. Using this value, along with the
photometric values of Rp/R⋆ and ρ⋆, and spectroscopic
value of M⋆, the density of KOI-94e is given by ρe ∼
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Fig. 9.— Best-fit simulated TTV of KOI-94c based on the TTV
data alone (black crosses connected with lines) with observed data
(blue points).
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Figure 6. Radial velocity vs. time from 2012 May onward. Black points are
data with 1σ errors (assuming a stellar jitter of 3.0 m s−1); a circular four-planet
fit is superimposed.

velocity trend. Over a two-year baseline, the median trend was
−0.0125 ± 0.0063 m s−1 day−1, which corresponds to a 3σ
upper limit of −6.9 m s−1 year−1. In the style of Winn et al.
(2010), we compute the mass of an outer perturber based on the
stellar acceleration, γ̇ , assuming the planet induces Newtonian
gravitational acceleration on the star and in the limit MP ≪ M⋆:
γ̇ = GMP/a

2. To induce a stellar acceleration γ̇ of −6.9 m s−1

year−1 via Newtonian gravity, an outer perturber would need to
satisfy

MP sin i

MJ

( a

10 AU

)−2
= 3.9, (3)

where i is the inclination of the planet’s orbital plane with respect
to the line of sight and MJ is the mass of Jupiter. Thus, with a
significance of 3σ , we can rule out companions more massive
than 3.9 MJ within 10 AU or more massive than 1.0 MJ within
5 AU.

4.2. Eccentric Orbit Solution

The four-planet fit in which we allow eccentricities to float
is the most versatile model. This model has the advantage
of simultaneously fitting the light curve and the RVs, which
measures ρ⋆ (thus refining M⋆ and R⋆). As demonstrated below,
the values for planet masses in this model agree with the planet
masses determined in the circular orbital solution to within 1σ ,
and so we adopt the parameters from the eccentric solution for
the rest of this work. The phase-folded RVs for the eccentric
orbital solution are shown in Figure 10.

The Kepler photometry and Keck RVs were simultaneously fit
with an orbital model. The model has the following free param-
eters: mean stellar density (ρ⋆), scaled planetary radius (rn/R∗),
impact parameter (bn), orbital period (Pn), center of transit time
(Tc,n), RV amplitude (Kn), eccentricity (en) and argument of
pericenter (wn) via esin wn and ecos wn. A photometric and RV
zero point were also included. The number (n = 1,2,3,4) corre-
sponds to the parameters for planets b, c, d, and e, respectively.
The transit model uses the quadratic formulae of Mandel & Agol
(2002). Limb-darkening coefficients were fixed in the models
to 0.3236 and 0.3052 as determined from the grid of Claret &
Bloemen (2011). The orbits are modeled with non-interacting
Keplerians.

A best-fit model was initially computed by minimizing χ2

with a Levenberg–Marquardt style algorithm. This model was
used to measure TTVs and to seed an MCMC analysis of the
model parameter space. TTVs were determined by fitting for
each individual transit, fixing all parameters except Tc to their
best-fit values. An updated best-fit model was then computed
using the TTVs to produce a better phased transit for each planet.
The time-series were corrected by computing time corrections
based on a linear interpolation of the TTVs.

Posterior distributions for each model parameter were deter-
mined with an MCMC-style algorithm. This model has been
described in Gautier et al. (2012) and Borucki et al. (2012),
the only difference is that the TTV measurements are included
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Figure 7. One-planet, circular fit to the RVs, phase folded to the period of KOI-94d. The black points are the data (error bars are 1σ ), and the black line is the circular
one-planet fit to the data. The gray points and fit are time-shifted repetitions of the black data points and fit. The red point is the oldest data point (2009); all other data
are from summer 2012.
(A color version of this figure is available in the online journal.)
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Fig. 2. Top: generalised Lomb Scargle periodogram of the SOPHIE
RV data. A peak is present at around 22 days. The FAP 10% level is
shown as a dashed horizontal line. The periods reported by Nesvorný
et al. (2013) are marked with vertical dashed lines. The Lomb Scargle
periodogram of the residuals is shown in red. Bottom: zoom for periods
between 5 and 30 days.

SOPHIE RVs of the KOI-142 system using the MCMC algo-
rithm described in detail in Díaz et al. (2013). The RV amplitude
expected for the inner planet is 2.58 ± 0.74 m s−1 (Nesvorný
et al. 2013), which would not be detectable with our current data.
Therefore, we decided to use a single Keplerian model at the pe-
riod of the outer, more massive companion. Note that the signal
is not expected to be strictly periodic because of the influence
of the inner planet, which changes the orbital parameters of the
companion. The change in the orbital parameters of the putative
outer planet has been studied in detail by Nesvorný et al. (2013),
who showed that the eccentricity remains well constrained for
at least 150 years. A numerical integration of the system up
to the epoch of the SOPHIE observations was performed using
the hybrid symplectic algorithm implemented in the Mercury6
code (Chambers 1999), and taking as initial conditions the val-
ues given in Table 2 of Nesvorný et al. (2013). We found that dur-
ing the time of the SOPHIE observations, the orbital elements of
KOI-142b change significantly, while the expected change for
the proposed companion at 22 days is much smaller1 than the
precision obtained in these parameters (see Table 1). Therefore,
although it is not exactly correct, using a Keplerian curve to
model the signal induced by the second companion is justified
for the period of the SOPHIE observations.

Uninformative priors were used in all parameters of the
model. In this case, we found a solution at orbital period P =
22.10 ± 0.25 days, and with eccentricity e = 0.19+0.30

−0.14. The
mode of the posterior eccentricity distribution is at e ∼ 0.065,
with a long tail towards higher values, and a second peak at
e ∼ 0.85. Because of this, most orbital parameters present a
similar bimodal distribution. In particular, the posterior of the
RV semi-amplitude K also extends to 277 m s−1 (95% confi-
dence level). Using the eccentricity measurement from Nesvorný
et al. (2013) as a constraint in our MCMC analysis, we measured
an RV amplitude of 48.9 ± 6.0 m s−1, which agrees well with
their prediction.

The inferred mode of the marginal posterior distributions and
their 68.3% confidence intervals are shown in Table 1 for the

1 ∆e/e = 0.01; ∆a/a = 3.8 × 10−4; ∆i ∼ 0.0025◦ ; ∆ω ∼ 0.5◦

Fig. 3. Main peak of the marginalised posterior distribution of the
RV semi-amplitude. The dashed vertical lines delimit the 1σ range pre-
dicted by Nesvorný et al. (2013).

Table 1. Parameters for the KOI-142 system at reference epoch
E = 2 456 475.40947 BJDUTC.

Fitted parameters
Orbital period, P [days] 22.10 ± 0.25√

e cos(ω) −0.32 ± 0.25√
e sin(ω) 0.24+0.17

−0.29

Mean anomaly at epoch [deg] 298+21
−77

RV amplitude, K [m s−1] 57.4+29
−7.5

Systemic velocity [km s−1] −20.4547+0.0035
−0.0085

Spectroscopic parameters
Effective temperature [K] 5460 ± 70
Surface gravity [dex] 4.6 ± 0.2
Metallicity 0.25 ± 0.09
Derived parameters
Periapsis passage, Tp, BJDUTC 2 456 478.7 ± 2.5

cov(P, Tp)† [days2] –0.00323
Orbital eccentricity 0.19+0.30

−0.14
Semi-major axis (AU) 0.1529 ± 0.0021
Minimum planet mass [MJ] 0.76+0.32

0.16

Mp sin i/Ms × 104 7.5+3.3
−1.6

Stellar mass, Ms [M⊙] 0.974 ± 0.038
Stellar radius, Rs [R⊙] 0.910 ± 0.040
Age [Gyr] 3.0+3.2

−2.0

Notes. (†) Covariance between orbital period and time of periapsis
passage.

revised stellar parameters described in Sect. 3. The best-fit model
is shown in Fig. 1. In Fig. 3 the marginalised posterior distribu-
tion of the RV amplitude is presented. The RV signal agrees well
with the prediction by Nesvorný et al. (2013).

A periodogram of the fit residuals does not show any power
at the period of the transiting object KOI-142 b. However, it does
show a peak at 14.8 days, with an FAP slightly below 10%.
Owing to the dynamic evolution of the system, more RVs are
necessary to understand the nature of this peak. One possibility
is that it is a harmonic of the stellar rotational period. The residu-
als of the fit, which are consistent with white noise, allow one to
derive an upper limit to the mass of the inner planet of 53.9 M⊕
at the 99% confidence level, which also agrees with the value
estimated with TTVs mb = 8.7 ± 2.5 M⊕ (Nesvorný et al. 2013).

To compute the mass and radius of the stellar host
we drew 10 000 samples from the distribution of Teff and
[Fe/H] determined in Sect. 3, which was assumed to follow an
uncorrelated multi-normal distribution. We combined this with
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KOI-142:
“The King of Transit Timing”

TTVs is one of the main revolution of space photometry for the 
characterization of transiting exoplanets
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Fig. 1. SOPHIE radial velocities as a function of time (left) and orbital phase (right), and corresponding residuals. The over-plotted black curve is
the most probable fit model.

expected to be strictly periodic, due to the influence of the inner
planet, which changes the orbital parameters of the companion.
The change in the orbital parameters of the putative outer planet
has been studied in detail by Nesvorný et al. (2013), who show
that the eccentricity remains well constrained for at least 150
years. A numerical integration of the system up to the epoch of
the SOPHIE observations was performed using the hybrid sym-
plectic algorithm implemented in the Mercury6 code (Chambers
1999), and taking as initial conditions the values given in Table
2 of Nesvorný et al. (2013). We found that over the time of the
SOPHIE observations, the orbital elements of KOI-142b change
significantly, while the expected change for the proposed com-
panion at 22 days is much smaller1 than the precision obtained
in these parameters (see Table 1). Therefore, if not exactly cor-
rect, the use of a Keplerian curve to model the signal induced by
the second companion is justified over the period of the SOPHIE
observations.

Uninformative priors were used in all parameters of the
model. In this case, we find a solution at orbital period P =
22.10 ± 0.25 days, and with eccentricity e = 0.19+0.30−0.14. The
mode of the posterior eccentricity distribution is at e ∼ 0.065,
with a large tail towards larger values, and a second peak at
e ∼ 0.85. Because of this, most orbital parameters present
a similar bimodal distribution. In particular, the posterior of
the RV semi-amplitude K also extends up to 277 m s−1(95%
confidence level). Using the eccentricity measurement from
Nesvorný et al. (2013) as a constraint in our MCMC analysis
we measured a RV amplitude of 48.9 ± 6.0 m s−1, in good
agreement with their prediction.

The inferredmode of the marginal posterior distributions and
their 68.3% confidence intervals are shown in Table 1, for the
revised stellar parameters described in Section 3. The best-fit
model is shown in Figure 1. In Figure 3 the marginalised pos-
terior distribution of the radial velocity amplitude is presented.
It can be seen that the RV signal is in good agreement with the
prediction by Nesvorný et al. (2013).

A periodogram of the fit residuals does not show any power
at the period of the transiting object KOI-142 b. However, it does
show a peak at 14.8 days, with a FAP slightly below 10%. Due
to dynamic evolution of the system further RVs are necessary
to understand the nature of this peak. One possibility is that it
is an harmonic of the stellar rotational period. The residuals of
the fit, which are consistent with white noise, allow to put an
upper limit to the mass of the inner planet of 53.9 M⊕ to 99%

1 ∆e/e = 0.01; ∆a/a = 3.8 × 10−4; ∆i ∼ 0.0025◦ ; ∆ω ∼ 0.5◦

Table 1. Parameters for the KOI-142 system at reference epoch
E = 2456475.40947 BJDUTC .

Fitted parameters
Orbital period, P [days] 22.10 ± 0.25√
e cos(ω) −0.32 ± 0.25√
e sin(ω) 0.24+0.17−0.29

Mean anomaly at epoch [deg] 298+21−77
RV amplitude, K [m s−1] 57.4+29−7.5
Systemic velocity [km s−1] −20.4547+0.0035−0.0085

Spectroscopic parameters
Effective temperature [K] 5460 ± 70
Surface gravity [dex] 4.6 ± 0.2
Metallicity 0.25 ± 0.09

Derived parameters
Periapsis passage, Tp, BJDUTC 2456478.7± 2.5
cov(P, Tp)† [days2] -0.00323
Orbital eccentricity 0.19+0.30−0.14
Semi-major axis (AU) 0.1529 ± 0.0021
Minimum planet mass [MJ] 0.76+0.320.16
Mp sin i/Ms × 104 7.5+3.3−1.6
Stellar mass, Ms [M⊙] 0.974 ± 0.038
Stellar radius, Rs [R⊙] 0.910 ± 0.040
Age [Gyr] 3.0+3.2−2.0

Notes. (†) Covariance between orbital period and time of periapsis pas-
sage.

confidence level, which also agrees with the value estimated
with TTVs mb = 8.7 ± 2.5 M⊕ (Nesvorný et al. 2013).

To compute the mass and radius of the stellar host we drew
10,000 samples from the distribution of T eff and [Fe/H] deter-
mined in Section 3, and assumed to follow an uncorrelatedmulti-
normal distribution. We combined them with the stellar density
from the transit fit (Nesvorný et al. 2013), corrected for the ec-
centricity using the posterior samples obtained with the MCMC
algorithm. The mass and radius of the star were obtained by in-
terpolation of the Dartmouth stellar tracks (Dotter et al. 2008).
Around 70% of the samples fall in an unphysical region of pa-
rameter space, where the interpolation cannot be done. This is
probably due to correlations between T eff , [Fe/H], and the stel-
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Fig. 4.— The TTVs and TDVs of KOI-142.01. Data with associated error bars are shown

in both panels. The TTV errors are ≃1-2 min and are unresolved on the scale of panel (a).
The green line shows our best simultaneous fit to the TTVs and TDVs. The red line shows

the best TTV-only fit. These two fits give practically identical TTVs (the two lines overlap
in panel a).
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Mb < 17.6 M⊕ 

Pb ≃ 10.95 days. 

Pc= 22.10 ± 0.25

TTVs:  
Mc = 0.626 ± 0.03 MJup 
Nesvorný et al., 2013

Radial velocity: 
Mc = 0.76 ± 0.36 MJup 
Barros al., 2014
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Figure 6. Radial velocity vs. time from 2012 May onward. Black points are
data with 1σ errors (assuming a stellar jitter of 3.0 m s−1); a circular four-planet
fit is superimposed.

velocity trend. Over a two-year baseline, the median trend was
−0.0125 ± 0.0063 m s−1 day−1, which corresponds to a 3σ
upper limit of −6.9 m s−1 year−1. In the style of Winn et al.
(2010), we compute the mass of an outer perturber based on the
stellar acceleration, γ̇ , assuming the planet induces Newtonian
gravitational acceleration on the star and in the limit MP ≪ M⋆:
γ̇ = GMP/a

2. To induce a stellar acceleration γ̇ of −6.9 m s−1

year−1 via Newtonian gravity, an outer perturber would need to
satisfy

MP sin i

MJ

( a

10 AU

)−2
= 3.9, (3)

where i is the inclination of the planet’s orbital plane with respect
to the line of sight and MJ is the mass of Jupiter. Thus, with a
significance of 3σ , we can rule out companions more massive
than 3.9 MJ within 10 AU or more massive than 1.0 MJ within
5 AU.

4.2. Eccentric Orbit Solution

The four-planet fit in which we allow eccentricities to float
is the most versatile model. This model has the advantage
of simultaneously fitting the light curve and the RVs, which
measures ρ⋆ (thus refining M⋆ and R⋆). As demonstrated below,
the values for planet masses in this model agree with the planet
masses determined in the circular orbital solution to within 1σ ,
and so we adopt the parameters from the eccentric solution for
the rest of this work. The phase-folded RVs for the eccentric
orbital solution are shown in Figure 10.

The Kepler photometry and Keck RVs were simultaneously fit
with an orbital model. The model has the following free param-
eters: mean stellar density (ρ⋆), scaled planetary radius (rn/R∗),
impact parameter (bn), orbital period (Pn), center of transit time
(Tc,n), RV amplitude (Kn), eccentricity (en) and argument of
pericenter (wn) via esin wn and ecos wn. A photometric and RV
zero point were also included. The number (n = 1,2,3,4) corre-
sponds to the parameters for planets b, c, d, and e, respectively.
The transit model uses the quadratic formulae of Mandel & Agol
(2002). Limb-darkening coefficients were fixed in the models
to 0.3236 and 0.3052 as determined from the grid of Claret &
Bloemen (2011). The orbits are modeled with non-interacting
Keplerians.

A best-fit model was initially computed by minimizing χ2

with a Levenberg–Marquardt style algorithm. This model was
used to measure TTVs and to seed an MCMC analysis of the
model parameter space. TTVs were determined by fitting for
each individual transit, fixing all parameters except Tc to their
best-fit values. An updated best-fit model was then computed
using the TTVs to produce a better phased transit for each planet.
The time-series were corrected by computing time corrections
based on a linear interpolation of the TTVs.

Posterior distributions for each model parameter were deter-
mined with an MCMC-style algorithm. This model has been
described in Gautier et al. (2012) and Borucki et al. (2012),
the only difference is that the TTV measurements are included
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Figure 7. One-planet, circular fit to the RVs, phase folded to the period of KOI-94d. The black points are the data (error bars are 1σ ), and the black line is the circular
one-planet fit to the data. The gray points and fit are time-shifted repetitions of the black data points and fit. The red point is the oldest data point (2009); all other data
are from summer 2012.
(A color version of this figure is available in the online journal.)
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Table 1
Definitions of the Parameters Derived in This Paper

Parameter Definition

Parameters derived from transit light curves

t0 Time of a transit center (BJD – 2454833)
P Orbital period
Rp/R⋆ Planet-to-star radius ratio
a/R⋆ Scaled semi-major axis
b Impact parameter of the transit (= a cos i/R⋆, i: orbital inclination)
u1, u2 Coefficients for the quadratic limb-darkening law

Parameters derived from the PPE a

Ω Longitude of the ascending node

Parameters derived from TTVs

m Planetary mass
e Orbital eccentricity
ϖ = ω + Ω Longitude of the periastron

Note. a PPE can only constrain the difference of the nodal angles of KOI-94d and KOI-94e. We
have no information on Ω of KOI-94c.

Figure 1. Schematic illustration of the KOI-94 system. Planetary radii are
calculated from the planet-to-star radius ratio, stellar density obtained from the
transit light curves, and spectroscopic stellar mass M⋆ = 1.25 M⊙ (Hirano et al.
2012).
(A color version of this figure is available in the online journal.)

Apart from such characterization of the KOI-94 system, the
PPE itself is a unique phenomenon that is worth studying in a
more general context. If this event is observed in the future tran-
sit observations, it can be used to precisely constrain the relative
angular momentum of the planets, which is closely related to
their orbital evolution processes. In fact, this phenomenon had
been theoretically predicted before by Ragozzine & Holman
(2010) (see also Rabus et al. 2009) as an “overlapping double
transit,” and they emphasized its role in constraining the relative
nodal angle of the planets. However, neither the analytic formu-
lation that clarifies the physical picture of this phenomenon, nor
the discussion about how gravitational interactions among the
planets affect the PPE, has been presented so far.

In this paper, we investigate the constraints on masses and
eccentricities of KOI-94c, KOI-94d, and KOI-94e based on the
direct numerical analysis of their TTV signals. We also construct
an analytic model of the PPE, and discuss how the gravitational
interaction affects the occurrence of the next PPE based on the
model and the result of TTV analysis.

The plan of this paper is as follows. First, we perform an
intensive TTV analysis in Section 2. We discuss the constraints
on transit parameters based on the phase-folded transit light
curves, and those on the mass, eccentricity, and longitude of
periastron based on the numerical fit to the observed TTV
signals. Then in Section 3, we present an analytic description of
the PPE which elucidates how the height, duration, and central
time of the brightening caused by the overlap are related to
the orbital parameters. Based on this formulation, we provide a

general procedure for constraining the orbits of the overlapping
planets in Section 4. Here we also discuss a simple prediction
of the next PPE on the basis of a two-body problem. Finally,
based on the analytic model of the PPE and the result of TTV
analysis, we show in Section 5 how the gravitational interaction
among the planets affects the occurrence of the next PPE in the
KOI-94 system, referring to the difference from the two-body
prediction. Section 6 summarizes the paper. The results on the
properties of the KOI-94 system are all in Section 2, and so the
readers who are only interested in the TTV analysis can skip
Sections 3–5, where we mainly discuss the PPE.

2. ANALYSIS OF THE PHOTOMETRIC LIGHT CURVES

In this section, we report the analysis of photometric light
curves of KOI-94 taken by Kepler. We determine the orbital
phases, scaled semi-major axes, scaled planetary radii, and
inclinations of KOI-94c, KOI-94d, and KOI-94e from the
phase-folded transit light curves, and estimate their masses,
eccentricities, and longitudes of periastrons from their TTV
signals (see Table 1). In the following analysis, we neglect the
smallest and innermost planet KOI-94b, which does not affect
the TTV signals of the other three, as we will see in Section 2.2.

2.1. Transit Times and Transit Parameters

2.1.1. Data Processing

We analyze the short-cadence (∼1 minute) Pre-search
Data Conditioned Simple Aperture Photometry fluxes (e.g.,
Kinemuchi et al. 2012) from Quarters 4, 5, 8, 9, 12, and 13.
We do not include the data from Quarter 1, for which only the
long-cadence data is available. Since these light curves exhibit
the long-term trends that affect the baseline of the transit, we
remove those trends in the following manner. First, data points
within ±1 day of every transit caused by KOI-94c, KOI-94d, or
KOI-94e are extracted and each set of the data is fitted with a
fifth-order polynomial, masking out the points during the tran-
sit. Then we calculate the standard deviation of each fit, remove
outliers exceeding 5σ , and fit the data again with the fifth-order
polynomial. This process is iterated until all the 5σ outliers are
removed. Finally, all the data points in each chunk (including
those during the transit) are divided by the best-fit polynomial
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Figure 6. Best-fit simulated TTV of KOI-94e obtained by the grid-search for
md = 106 M⊕ (black crosses connected with the solid line) with observed
data (green points). The best-fit corresponds to ed = (0.02, 0.02) and ee =
(0.04, 0.02).
(A color version of this figure is available in the online journal.)

both md = 106 M⊕ and md = 73 M⊕ cases. Next, for all
the sets of (ec,ϖc, ed,ϖd) in 2σ (md = 106 M⊕ case) or 1σ
(md = 73 M⊕ case) confidence regions around the minimum,
we run integrations varying ee cos ϖe and ee sin ϖe from −0.1
to 0.1 at the grid spacing of 0.01, mc from 0 to 24 M⊕ at the grid
spacing of 6 M⊕, and me from 7 to 57 M⊕ at the grid spacing of
10 M⊕ (all of these cover the 1σ intervals from RV), to find the
set of eight parameters that best fits the TTV of KOI-94d.

MCMC Fit to the TTVs of KOI-94c and KOI-94d. Choosing
the above set as initial parameters, we then simultaneously fit
the TTVs of KOI-94c and KOI-94d using an MCMC algorithm.
In this fit, we use χ2

c + χ2
d as the χ2 statistic. The resulting

best-fit parameters and their 1σ uncertainties are summarized in
Table 6 for the two choices of md (the second and third columns).
The best-fit simulated TTVs are plotted in Figures 7 and 8 for
KOI-94c and KOI-94d, respectively.

Note that uncertainties of ec cos ϖc, ed cos ϖd, and ee cos ϖe
are relatively large for md = 73 M⊕ case. This is because the
posterior distributions of these parameters have two peaks, the
smaller of which lies close to the best-fit value for md = 106 M⊕
case. Considering this fact, the two results are roughly consistent
with each other. Nevertheless, a total χ2 in md = 73 M⊕ case
is smaller by 40 for 57 dof than in md = 106 M⊕ case. This
suggests that the TTV alone favors md smaller than the RV
best-fit value, as will be confirmed in the next subsection.

2.3. Solution Based Only on TTV

In order to obtain a solution independent of RVs, we perform
the same MCMC analysis of TTVs of KOI-94c and KOI-94d,
this time also allowing md to float. Since the above analyses
suggest that the eccentricities of all the planets are small, we
choose circular orbits with the best-fit RV masses as an initial
parameter set. The resulting best-fit parameters are summarized
in Table 6, and the corresponding best-fit simulated TTVs are
shown in Figures 9 and 10. As expected, we find a solution with
small eccentricities and with md smaller than the RV best-fit
value. This solution is similar to that for md = 73 M⊕ case,
except that md is even smaller.

Figure 7. Best-fit simulated TTVs of KOI-94c obtained by the MCMC fit (black
crosses connected with lines) with observed data (points with error bars). The
result for md = 73 M⊕ is plotted with solid lines (in O−C plot) and blue points
(in residual plot), and that for md = 106 M⊕ with dashed lines and sky-blue
points.
(A color version of this figure is available in the online journal.)

Figure 8. Best-fit simulated TTVs of KOI-94d obtained by the MCMC fit (black
crosses connected with lines) with observed data (points with error bars). The
result for md = 73 M⊕ is plotted with solid lines (in O−C plot) and red points
(in residual plot), and that for md = 106 M⊕ with dashed lines and pink points.
(A color version of this figure is available in the online journal.)

2.4. Discussion: Comparison with the RV Results

While the values of ed and ee obtained in our TTV analysis
are consistent with the RV values in Table 2, the best-fit ec
obtained from the TTV is ∼1.8σ smaller than the RV best
fit (ec = 0.43 ± 0.23). Considering the marginal detection of
KOI-94c’s RV and the dynamical stability of the system,
however, the TTV value seems to be preferred. In fact, this
value is robustly constrained by the clear TTV signal of KOI-
94c; in the grid-search performed in Section 2.2.3, we searched
the region where ec ! 0.14 to fit the TTV of this planet, but
the resulting χ2

c strongly disfavored large ec regions in both
md = 106 M⊕ and md = 73 M⊕ cases.

The TTV values of mc and me are consistent with the RV
results, but me is constrained to a rather lower value than the
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Table 1
(Continued)

Name Per Mass Radius Flux1 First Ref. Mass, Radius Ref.
(days) (M⊕) (R⊕) (F⊕)

KOI-1612.01 2.465 0.48 ± 3.20 0.82 ± 0.03 1700 Borucki et al. (2011) Marcy et al. (2014)
KOI-314 b 0.669 0.06 ± 1.20 1.07 ± 0.02 3600 Borucki et al. (2011) Kipping et al. (2014)
KOI-314 c 0.669 0.06 ± 1.20 1.07 ± 0.02 3600 Borucki et al. (2011) Kipping et al. (2014)

Notes.
1 Incident stellar flux is calculated as F/F⊕ = (R⋆/R⊙)2(Teff/5778 K)4a−2

√
1/(1 − e2), where a is the semi-major axis in A.U. and e is the eccentricity. Typical

errors are 10%.
2 Mass is from Endl et al. (2012), radius is from Dragomir et al. (2013b). The density is calculated from these values.
3 Planet mass determined by TTVs of a neighboring planet.
4 Planet mass and density updated based on additional RVs.

Figure 2. Left: density vs. radius for 65 exoplanets. Gray points have RV-determined masses, orange points have TTV-determined masses, and the point size
corresponds to 1/σ (ρP). The blue squares are weighted mean densities in bins of 0.5 R⊕, with error bars representing σi /

√
Ni , where σi is the standard deviation of

the densities and Ni is the number of exoplanets in bin i. We omit the weighted mean densities below 1.0 R⊕ because the scatter in planet densities is so large that
the error bars span the range of physical densities (0–10 g cm−3). The blue diamonds indicate solar system planets. The red line is an empirical density–radius fit for
planets smaller than 1.5 R⊕, including the terrestrial solar system planets. The green line is the mass–radius relation from Seager et al. (2007) for planets of Earth
composition (67.5% MgSiO3, 32.5% Fe). The increase in planet density with radius for RP < 1.5 R⊕ is consistent with a population of rocky planets. Above 1.5 R⊕,
planet density decreases with planet radius, indicating that as planet radius increases, so does the fraction of gas. Right: mass vs. radius for 65 exoplanets. Same as left,
but the point size corresponds to 1/σ (MP) and the blue squares are the weighted mean masses in bins of 0.5R⊕, with error bars representing σi /

√
Ni , where σi is the

standard deviation of the masses and Ni is the number of exoplanets in bin i. The black line is an empirical fit to the masses and radii above 1.5 R⊕; see Equation (3).
The weighted mean masses were not used in calculating the fit. Some mass and density outliers are excluded from these plots, but are included in the fits.
(A color version of this figure is available in the online journal.)

Kepler-78 b, and Kepler-406 b (KOI-321 b). Because there are
so few planets with well-determined masses in this regime, we
include the terrestrial solar system planets (Mercury, Venus,
Earth, Mars) in a fit to the planets smaller than 1.5 R⊕. We im-
pose uncertainties of 20% in their masses and 10% in their radii
so that the solar system planets will contribute to, but not dom-
inate, the fit. Because the solar system planets appear to satisfy
a linear relation between density and radius, we choose a linear
fit to planet density versus radius. We find

ρP = 2.43 + 3.39
(

RP

R⊕

)
g cm−3. (1)

Transforming the predicted densities to masses via

MP

M⊕
=

(
ρP

ρ⊕

)(
RP

R⊕

)3

(2)

and calculating the residuals with respect to the measured planet
masses, we obtain reduced χ2 = 1.3, rms = 2.7 M⊕.

For exoplanets satisfying 1.5 ! RP/R⊕ < 4, we calculate an
empirical fit to their masses and radii, yielding

MP

M⊕
= 2.69

(
RP

R⊕

)0.93

(3)

with reduced χ2 = 3.5 and rms = 4.7 M⊕. We exclude Uranus
and Neptune from this fit because they differ from the exoplanets
in our sample. Most of the exoplanets in our sample have P < 50
days, and so we do not expect them to resemble Uranus and
Neptune, which have orbital periods of tens of thousands of
days.

The empirical density– and mass–radius relations and their
goodness of fit are summarized in Table 2. Below, we discuss
the implications of these relations for planet compositions.
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Figure 2. Left: density vs. radius for 65 exoplanets. Gray points have RV-determined masses, orange points have TTV-determined masses, and the point size
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the densities and Ni is the number of exoplanets in bin i. We omit the weighted mean densities below 1.0 R⊕ because the scatter in planet densities is so large that
the error bars span the range of physical densities (0–10 g cm−3). The blue diamonds indicate solar system planets. The red line is an empirical density–radius fit for
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composition (67.5% MgSiO3, 32.5% Fe). The increase in planet density with radius for RP < 1.5 R⊕ is consistent with a population of rocky planets. Above 1.5 R⊕,
planet density decreases with planet radius, indicating that as planet radius increases, so does the fraction of gas. Right: mass vs. radius for 65 exoplanets. Same as left,
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standard deviation of the masses and Ni is the number of exoplanets in bin i. The black line is an empirical fit to the masses and radii above 1.5 R⊕; see Equation (3).
The weighted mean masses were not used in calculating the fit. Some mass and density outliers are excluded from these plots, but are included in the fits.
(A color version of this figure is available in the online journal.)
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For exoplanets satisfying 1.5 ! RP/R⊕ < 4, we calculate an
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with reduced χ2 = 3.5 and rms = 4.7 M⊕. We exclude Uranus
and Neptune from this fit because they differ from the exoplanets
in our sample. Most of the exoplanets in our sample have P < 50
days, and so we do not expect them to resemble Uranus and
Neptune, which have orbital periods of tens of thousands of
days.

The empirical density– and mass–radius relations and their
goodness of fit are summarized in Table 2. Below, we discuss
the implications of these relations for planet compositions.
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star) will cease after 2014. The last transit of Kepler-35b was
at BJD 2455965 (Welsh et al. 2012); it will start transiting
again in a decade. As pointed out by Schneider (1994), some
CBP orbits may be sufficiently misaligned with respect to their
host eclipsing binary (EB) and hence precessing such that the
above behavior may not be an exception. Additionally, Foucart
& Lai (2013) argue that CB disks around sub-AU stellar binaries
should be strongly aligned (mutual inclination θ ! 2◦), in the
absence of external perturbations by additional bodies (either
during or after formation), whereas the disks and planets around
wider binaries can potentially be misaligned (θ " 5◦). Foucart
& Lai (2013) note that due to the turbulent environment of star
formation, the rotational direction of the gas accreting onto the
central protobinary is in general not in the same direction as
that of the central core. Their calculations show that the CB
disk is twisted and warped under the gravitational influence of
the binary. These features introduce a back-reaction torque onto
the binary, which, together with an additional torque from mass
accretion, will likely align the CB protoplanetary disks and the
host binary for close binaries but allow for misalignment in
wider binaries.

The observational consequence of slightly misaligned CBPs
is that they may often fail to transit their host stars, resulting in
a light curve exhibiting one or more consecutive tertiary transits
followed by prolonged periods of time where no transits occur.
This effect can be further amplified if the size of the semiminor
axis of the transited star projected upon the plane of the sky is
large compared with the star’s radius.

Such is the case of Kepler-413 (KIC 12351927), an
10.116146 day EB system. Its Kepler light curve exhibits a
set of three planetary transits (separated by ∼66 days) followed
by ∼800 days with no transits, followed by another group of
five transits (again ∼66 days apart). We do not detect additional
events ∼66 days (or integer multiples of) after the last transit.
Our analysis shows that such peculiar behavior is indeed caused
by a small misalignment and precession of the planetary orbit
with respect to that of the binary star.

Here, we present our discovery and characterization of the
CBP orbiting the EB Kepler-413. This paper is organized as
an iterative set of steps that we followed for the complete
description of the CB system. In Section 2, we describe our
analysis of the Kepler data, followed by our observations in
Section 3. We present our analysis and results in Section 4,
discuss them in Section 5, and draw conclusions in Section 6.

2. KEPLER DATA

2.1. Kepler Light Curve

We extract the center times of the primary (Tt) and secondary
(To) stellar eclipses, the normalized EB semimajor axes (a/RA),
(a/RB), the ratio of the stellar radii (RB/RA), and inclination (ib)
of the binary and the flux contribution of star B from the Kepler
light curve. Throughout this work, we refer to the primary star
with a subscript “A”, to the secondary with a subscript “B”,
and to the planet with a subscript “p”. We model the EB light
curve of Kepler-413 with Eclipsing Light Curve (ELC) (Orosz
et al. 2012a).

The Kepler data analysis pipeline (Jenkins et al. 2010a)
uses a cosmic ray detection procedure that introduces arti-
ficial brightening near the middle of the stellar eclipses of
Kepler-413 (see also Welsh et al. 2012). The procedure flags
and corrects for positive and negative spikes in the light curves.
The rapidly changing stellar brightness during the eclipse and

Figure 1. Section of the raw (SAPFLUX), normalized Kepler light curve of
Kepler-413 spanning Quarter 15. The prominent stellar eclipses are clearly
seen, with a depth of ∼6% and ∼0.5% for the primary and secondary eclipses,
respectively. The last detected transit of the CBP is indicated with an arrow near
day 1219. The gap near day 1250 is due to missing data.
(A color version of this figure is available in the online journal.)

the comparable width between the detrending window used
by the pipeline and the duration of the stellar eclipse misleads
the procedure into erroneously interpreting the mid-eclipse data
points as negative spikes. This leads to the unnecessary ap-
plication of the cosmic ray correction to the mid-eclipse data
points prior to the extraction of the light curve. The target pixel
files, however, contain a column that stores the fluxes, aper-
ture positions, and times of each flagged cosmic ray event. To
account for the anomalous cosmic ray rejection introduced by
the pipeline, we add this column back to the flux column us-
ing fv (downloaded from the Kepler Guest Observer Web site)
and then re-extract the corrected light curve using the kepex-
tract package from PyKE (Still & Barclay 2012, Astrophysics
Source Code Library, 8004)14 (Kinemuchi et al. 2012). We note
that our custom light curve extraction from the target pixel files
for Quarters 1 through 14 introduces a known timing error of
∼67 s in the reported times that we account for.

Next, we detrend the normalized, raw Kepler data (SAPFLUX
with a SAPQUALITY flag of 0) of Kepler-413 by an iterative
fit with a high-order (50+) Legendre polynomial on a quarter-
by-quarter basis. A representative section of the light curve,
spanning Quarter 15, is shown in Figure 1. We use simple
σ -clipping criteria, where points that are 3σ above and below
the fit are removed and the fit is recalculated. Next, the stellar
eclipses are clipped out. We note that for our search for transiting
CBPs, we do this for the entire EB catalog listed in Slawson
et al. (2011) and B. Kirk et al. (2014, in preparation). The
order of execution of the two steps (detrending and removal of
stellar eclipses) generally depends on the baseline variability of
the particular target. For quiet stars (like Kepler-413), we first
remove the eclipses and then detrend.

Next, we phase fold the light curve of Kepler-413 on our
best-fit binary star period of P = 10.116146 days. For fitting
purposes, we allow the limb-darkening coefficients of the
primary star to vary freely. We note that star B is not completely
occulted during the secondary stellar eclipse and its contribution
to the total light during secondary eclipse needs to be taken into
account. The best-fit models to the folded primary and secondary
eclipses, based on the fast analytic mode of ELC (using Mandel
& Agol 2002), are shown in Figure 2. The best-fit parameters
for the ELC model of the Kepler light curve of Kepler-413
are listed in Table 1. Including a “third-light” contamination
of 8% due to the nearby star (see V. B. Kostov et al. (2014,

14 http://keplerscience.arc.nasa.gov/PyKE.shtml
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KOI: false positive rate

•  Morton & Johnson (2011): median FPR ~ 5% (modeling) 
•  Santerne et al., (2012): 35% for giant close-in candidates (radial velocity 

observations with SOPHIE) 
•  Fressin et al., (2013) global FPR ~9.4% (modeling): giants 17.7%, Small 

Neptunes 6.7% and Earth-size 12.3% 
•  Santerne et al. (2013): re-evaluation of Fressin’s value to 11.3% (modeling) 
•  Santerne et al. (in prep): 50% for all giant candidates (SOPHIE observations)
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Fig. 1. A synthetic transit light curve generated from a planetary model, shown in green. The red curve is the best fit

using a blend model. Both models are compatible with the data points (black dots with error bars).

process requires intensive computation resources (to compute up to 7 � 108 models), they use 1024 processors
of the NASA Pleiades cluster. Then, they construct maps for two of the free parameters: distance and mass
of the primary star in the binary for a background/foreground eclipsing binary scenario, mass of the secondary
star of the eclipsing binary and the mass of the primary star for the triple stellar system, planetary radius and
stellar mass of the transiting star for the star-star-planet triple scenario. The statistics in this maps is based
on a ⇥2 di�erence between the considered scenario and the best model of the star-transiting planet scenario.
The confidence regions are obtained using the number of free parameters as the number of degrees of freedom,
and the region outside the 3� contour is excluded. But the general approach is not conceptually correct, as in
the frequentist approach model comparison is not possible. This method has not been proved to be statistically
consistent using, for example, simulated data. Additional observations (radial velocity, high resolution image
with adaptive optics, transits observed in the infrared with Spitzer) add, a posteriori, constraints in the statistic
maps produced from the ⇥2 di�erence. These maps are used to constrain the allowed magnitude range of the
blended stars (inside the 3� contour and allowed by the additional observations). Then, they use the Besançon
Galactic structure models (Robin et al. 2003) to count background/foreground stars in the allowed magnitude
range. Finally, taking into account the star counts and the probability of each scenario they compute a false
alarm rate for the star-transiting planet scenario. If this false alarm rate is small enough, the planet is said to
be validated (Fressin et al. 2011).

Although the method is promising and has produced interesting results, no rigorous demonstration of its
validity has been presented. We decided to develop our own validation code, using an entirely bayesian approach
that allows for statistically rigorous model comparison. Hopefully, this tool will permit confirming the Kepler
validated planets and discover many more small transits in the CoRoT candidate list.

3 PASTIS

PASTIS (Planetary Analysis and Small Transit Investigation Software) was conceived as a fully bayesian code
that includes all the observations for the model comparison: light curves in di�erent filters, radial velocity
observations and photometric magnitudes in various filters, and is flexible to include new observables due to
its modular structure. PASTIS models the light curve in a given filter with the JKTEBOP code (Southworth
et al. 2004), based on the EBOP code (Popper & Etzel 1981; Etzel 1981; Nelson & Davis 1972), elipsoidal and
reflection e�ect are included in the model. PASTIS analyze the radial velocity measurements (including bisector,
full width at half maximum and constrast) from a simulated cross-correlation function (Dı́az et al. 2012). Also,
PASTIS models the spectral energy distribution to compare with the photometric magnitudes measurements.
To generate these models, PASTIS use models of stellar atmospheres: ATLAS9 (Castelli & Kurucz 2004) or

Two approachs
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stellar mass of the transiting star for the star-star-planet triple scenario. The statistics in this maps is based
on a ⇥2 di�erence between the considered scenario and the best model of the star-transiting planet scenario.
The confidence regions are obtained using the number of free parameters as the number of degrees of freedom,
and the region outside the 3� contour is excluded. But the general approach is not conceptually correct, as in
the frequentist approach model comparison is not possible. This method has not been proved to be statistically
consistent using, for example, simulated data. Additional observations (radial velocity, high resolution image
with adaptive optics, transits observed in the infrared with Spitzer) add, a posteriori, constraints in the statistic
maps produced from the ⇥2 di�erence. These maps are used to constrain the allowed magnitude range of the
blended stars (inside the 3� contour and allowed by the additional observations). Then, they use the Besançon
Galactic structure models (Robin et al. 2003) to count background/foreground stars in the allowed magnitude
range. Finally, taking into account the star counts and the probability of each scenario they compute a false
alarm rate for the star-transiting planet scenario. If this false alarm rate is small enough, the planet is said to
be validated (Fressin et al. 2011).

Although the method is promising and has produced interesting results, no rigorous demonstration of its
validity has been presented. We decided to develop our own validation code, using an entirely bayesian approach
that allows for statistically rigorous model comparison. Hopefully, this tool will permit confirming the Kepler
validated planets and discover many more small transits in the CoRoT candidate list.

3 PASTIS

PASTIS (Planetary Analysis and Small Transit Investigation Software) was conceived as a fully bayesian code
that includes all the observations for the model comparison: light curves in di�erent filters, radial velocity
observations and photometric magnitudes in various filters, and is flexible to include new observables due to
its modular structure. PASTIS models the light curve in a given filter with the JKTEBOP code (Southworth
et al. 2004), based on the EBOP code (Popper & Etzel 1981; Etzel 1981; Nelson & Davis 1972), elipsoidal and
reflection e�ect are included in the model. PASTIS analyze the radial velocity measurements (including bisector,
full width at half maximum and constrast) from a simulated cross-correlation function (Dı́az et al. 2012). Also,
PASTIS models the spectral energy distribution to compare with the photometric magnitudes measurements.
To generate these models, PASTIS use models of stellar atmospheres: ATLAS9 (Castelli & Kurucz 2004) or
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Allowed region

Figure 12. Map of the χ2 surface (goodness of fit) for blends involving back-
ground eclipsing binaries composed of two stars. The vertical axis represents the
distance between the background pair of objects and the primary star, expressed
in terms of the difference in the distance modulus. Only blends inside the solid
white contour match the Kepler light curve within acceptable limits (3σ , where
σ is the significance level of the χ2 difference compared to a transit model fit;
see Fressin et al. 2011). Lighter-colored areas (red, orange, and yellow) mark
regions of parameter space giving increasingly worse fits to the data (4σ , 5σ ,
etc.), and correspond to blends we consider to be ruled out. The hatched blue
regions at the bottom correspond to blends that can be excluded as well because
of their overall r–Ks colors, which are either too red (left) or too blue (right)
compared to the measured value for Kepler-22b, by more than 3σ (0.066 mag).
The solid diagonal green line is the locus of eclipsing binaries that are 1 mag
fainter than the target. Blends in the hatched green area below this line are ruled
out because they are bright enough to have been detected spectroscopically. In
the case of Kepler-22b, the above color and brightness constraints are redundant
with those from BLENDER, which already rules out blends in these areas based
on the quality of the light curve fit. Viable blends are all seen to be less than
about 5.5 mag fainter than the target (indicated with the dotted green line).

Allowed Region

Figure 13. Similar to Figure 12 for blends involving background or foreground
stars transited by a larger planet. For this type of blend the color and brightness
constraints exclude large portions of parameter space. The only viable blends
that remain reside in the area labeled “Allowed Region,” delimited by the thick
white contour. These blends are all within about 5 mag of the target (dotted
green line).

of the dimensions, corresponding to the mass of the secondary
and to the relative distance between the primary and the binary
(cast for convenience here in terms of the difference in distance

Figure 14. Similar to Figures 12 and 13 for the case of hierarchical triple
systems in which the secondary is transited by a planet. Blends inside the white
3σ contour yield light curves that match the shape observed for Kepler-22b.
However, the combination of the color and brightness constraints (hatched blue
and green areas, respectively) exclude all of these false positives.

modulus in magnitudes). The colored regions represent contours
of equal goodness of fit compared to a transiting planet model,
with the 3σ contour indicated in white. Blends inside this
contour give acceptable fits to the Kepler photometry, and are
considered viable. They all involve eclipsing binaries that are
up to ∼5.5 mag fainter than the target (dashed green line in
the figure). Other constraints can potentially rule out additional
blends. For example, blends in the blue-hatched areas have
overall colors for the combined light that are either too red (left)
or too blue (right) compared to the measured color of the target
(r−Ks = 1.475 ± 0.022, taken from the KIC; Brown et al. 2011),
at the 3σ level. For this particular kind of blend these constraints
are not helpful however, as those scenarios are already ruled out
by BLENDER. False positives that are in the green-hatched area
correspond to secondary components that are less than 1 mag
fainter than the target, and which we consider to be also ruled
out because such stars would usually have been detected in our
spectroscopic observations, as a second set of lines. Once again
this constraint is redundant with the BLENDER results. The
one-mag limit is very conservative, as stars down to 2 or 3 mag
fainter than the target would also most likely have been seen in
our high-resolution, high signal-to-noise ratio Keck spectra.

A similar diagram for blends involving background or fore-
ground stars orbited by a transiting planet is presented in
Figure 13. In this case both the color index constraint and the
brightness constraint significantly reduce the space of parame-
ters in which blends can reside, which is indicated by the thick
white contour (“Allowed Region”). Within this area only ter-
tiaries that are between 0.32 RJup and 2.0 RJup in size are able to
produce signals that are consistent with the observations. These
false positives are all in the background, and can be up to 5 mag
fainter than the target in the Kepler bandpass, as indicated by
the dashed green line.

BLENDER easily rules out all hierarchical triple configura-
tions with stellar tertiaries, as these invariably lead to the wrong
shape for a transit. However, planetary tertiaries of the right size
can still mimic the light curve well. The landscape for this type
of blend is seen in Figure 14. For Kepler-22b the combination
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Figure 12. Multiplicity statistics by spectral type. The thin solid lines represent
stars and brown dwarfs beyond the spectral range of this study, and their sources
are listed in the text. For the FGK stars studied here, the thick dashed lines show
our observed multiplicity fractions, i.e., the percentage of stars with confirmed
stellar or brown dwarf companions, for spectral types F6–G2 and G2–K3. The
thick solid lines show the incompleteness-adjusted fraction for the entire F6–K3
sample. The uncertainties of the multiplicity fractions are estimated by bootstrap
analysis as explained in Section 5.2.

publications, when available. Otherwise, they are estimated
using mass ratios for double-lined spectroscopic binaries, or
from multi-color photometry from catalogs, or using the ∆mag
measures in the WDS along with the primary’s spectral type.
Metallicity and chromospheric activity estimates of the primary
are adopted for all components of the system.

5.3.2. Multiplicity by Spectral Type and Color

Figure 12 shows the multiplicity fraction for stars and brown
dwarfs. Most O-type stars seem to form in binary or multiple
systems, with an estimated lower limit of 75% in clusters and
associations having companions (Mason et al. 1998a, 2009).
Studies of OB-associations also show that over 70% of B and
A type stars have companions (Shatsky & Tokovinin 2002;
Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007). In sharp
contrast, M-dwarfs have companions in significantly fewer
numbers, with estimates ranging from 11% for companions
14–825 AU away (Reid & Gizis 1997) to 34%–42% (Henry
& McCarthy 1990; Fischer & Marcy 1992). Finally, estimates
for the lowest mass stars and brown dwarfs suggest that only
10%–30% have companions (Burgasser et al. 2003; Siegler et al.
2005; Allen et al. 2007; Maxted et al. 2008; Joergens 2008).
Our results for F6–K3 stars are consistent with this overall
trend, as seen by the thick solid lines for the incompleteness-
corrected fraction. Moreover, the thick dashed lines for two
subsamples of our study show that this overall trend is present
even within the range of solar-type stars. Of the blue subsample
(0.5 ! B − V ! 0.625, F6–G2, N = 131), 50% ± 4%
have companions, compared with only 41% ± 3% for the red
subsample (0.625 < B − V ! 1.0, G2–K3, N = 323).

5.3.3. Period Distribution

Figure 13 shows the period distribution of all 259 confirmed
pairs, with an identification of the technique used to discover
and/or characterize the system. To provide context, the axis
at the top shows the semimajor axis corresponding to the pe-
riod on the x-axis assuming a mass sum of 1.5 M⊙, the aver-
age value of all the confirmed pairs. When period estimates

Figure 13. Period distribution for the 259 confirmed companions. The data
are plotted by the companion detection method. Unresolved companions
such as proper-motion accelerations are identified by horizontal line shading,
spectroscopic binaries by positively sloped lines, visual binaries by negatively
sloped lines, companions found by both spectroscopic and visual techniques by
crosshatching, and CPM pairs by vertical lines. The semimajor axes shown in
AU at the top correspond to the periods on the x-axis for a system with a mass
sum of 1.5 M⊙, the average value for all the pairs. The dashed curve shows
a Gaussian fit to the distribution, with a peak at log P = 5.03 and standard
deviation of σlog P = 2.28.

are not available from spectroscopic or visual orbits, we esti-
mate them as follows. For CPM companions with separation
measurements, we estimate semimajor axes using the statistical
relation log a′′ = log ρ ′′ + 0.13 from DM91, where a is the
angular semimajor axis and ρ is the projected angular separa-
tion, both in arcseconds. This, along with mass estimates as de-
scribed in Section 5.3.1 and Newton’s generalization of Kepler’s
Third Law yields the period. For the remaining few unresolved
pairs, we assume periods of 30–200 years for radial-velocity
variables and 10–25 years for proper-motion accelerations. The
period distribution follows a roughly log-normal Gaussian pro-
file with a mean of log P = 5.03 and σlog P = 2.28, where
P is in days. This average period is equivalent to 293 years,
somewhat larger than Pluto’s orbital period around the Sun. The
median of the period distribution is 252 years, similar to the
Gaussian peak. This compares with corrected mean and me-
dian values of 180 years from DM91. The larger value of the
current survey is a result of more robust companion informa-
tion for wide CPM companions. The similarity of the overall
profile with the incompleteness-corrected DM91 plot suggests
that most companions they estimated as missed have now been
found. The shading in the figure shows the expected trend—the
shortest period systems are spectroscopic, followed by com-
bined spectroscopic/visual orbits, then by visual binaries, and
finally by CPM pairs. The robust overlap between the various
techniques in all but the longest period bins underscores the
absence of significant detection gaps in companion space and
supports our earlier statements about the completeness of this
survey. Binaries with periods longer than log P = 8 are rare,
and only 10 of the 259 confirmed pairs (4%) have estimated
separations larger than 10,000 AU. Although separations wider
than this limit were not searched comprehensively, Figure 8
shows that separations of up to 14,000 AU were searched for
some systems, and 56% of the primaries were searched beyond
the 10,000 AU limit. The drop in the number of systems with
companions thus appears to occur within our search space and
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Fig. 10. Observed mass histogram for the planets in the com-
bined sample. Before any bias correction, we can already notice
the importance of the sub-population of low-mass planets. We
also remark a gap in the histogram between planets with masses
above and below ⇥30 M�.

4.4. The period distribution of Super-Earth and
Neptune-mass planets

The observed distribution of orbital periods for planets less mas-
sive than 30 M� is illustrated in Fig.13. In Fig.14, the same dis-
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Fig. 11. Same as Fig. 10 but for planets with periods smaller than
100 days. We see the dominance of low-mass planet with short
orbital periods.
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Fig. 12. Histograms of planetary masses, comparing the ob-
served histogram (black line) and the equivalent histogram after
correction for the detection bias (red line).

tribution is reproduced with a black histogram, to be compared
with the histogram after correction for detection incompleteness
(red histogram). In agreement with Kepler’s preliminary find-
ings (Borucki et al. 2011), the sub-population of low-mass planet
appears mostly confined to tight orbits. The majority of these
low-mass planets have periods shorter than 100 days. Low-mass
planets on longer periods are of course more a�ected by detec-
tion limits, this is however, at least partly, taken into account in
our bias estimate and correction. We conclude that this feature
must be real.

4.5. Orbital eccentricities of Super-Earth and Neptune-type
planets

Figure 15 displays the orbital eccentricities as a function of the
planetary mass. We can remark the very large scatter of orbital
eccentricities measured for gaseous giant planets, some of them
having eccentricities as large as 0.93. Such very large eccentric-
ities are not observed for planets with masses smaller than about
30 M� for which the most extrem values are limited around 0.45.
For low-mass planets the estimation of small orbital eccentricites
of the best keplerian fit is biased. For the moment, the eccentric-
ities below 0.2 (and small masses) have to be considered with
caution .

4.6. Fraction of multiplanetary systems with low mass
planets

For systems with planets less massive than 30 M�, the fraction
of multi-planetary systems is extremely high. For the 24 con-
cerned systems this fraction exceeds 70 %. It is tempting to have
a rate of multi-planetary systems hosting at least one gaseous
giant planets. Unfortunately, the optimum observing strategy
needed to detect low-mass planets has not been applied to every
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Fig. 4.— K2 campaign 1 (↵
2000

= 11h 37m 55.65s, �
2000

= +01� 110 19.700) statistics. Top left:

the field-of-view superimposed on the star density map. This sparse field in terms of star counts

features ⇠500-700 stars per deg2. Bottom left: star count per deg2 as a function of galactic latitude.

Right: star count as a function of spectral type, column-stacked by luminosity class. The sample

consists of Kp =7-17 stars.

crude numbers do not account for the low S/N cuto↵ or single event systems, nor do they reflect

any instrumental window functions. They only serve as a rough guide to the expected number of

planets in the field around all Kp = 7-17 stars, not only those selected as K2 targets.

3.2. Crowding and contamination

Kepler is designed as a planet hunting mission, so it is crucial to understand and estimate

the amount of crowding in the field and contamination due to third light. Eclipsing binary stars

have been the main culprit for false positives: signals in light curves that resemble those of plan-

etary transits (Fressin et al. 2013). Because of third light dilution, the depths of stellar eclipses

are quenched to planetary transit levels and complex approaches and/or follow-up spectroscopic
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Figure 1. Probability for a possibly blending star to be projected within 2′′

of a Kepler target star, as a function of Galactic latitude, as determined by
TRILEGAL simulations. The plotted points are simulations; the lines are the
exponential fits as described in Equation (8).
(A color version of this figure is available in the online journal.)

2.1.1. Probability of a Blend

The blend probability can be calculated by determining the
average sky density (e.g., stars per square arcsec) of stars faint
enough so as not to be obviously present in Kepler data yet
bright enough to possibly mimic a transit. The first condition is
somewhat subjective, and we conservatively say that a star must
be more than 1 mag fainter than the Kepler primary in order to
be able to hide undetected within the Kepler aperture. In practice
the true value is probably significantly fainter, but this approxi-
mation will lead to only a small overestimate of the blended star
probability, as there are many more faint than bright stars.

The faint condition can be determined by noting that in order
for a BB system to mimic a transit of fractional depth δ, the
blended system must comprise more than a fraction δ of the
total flux within the Kepler aperture. This condition may be
expressed as the following:

mK,bin − mK,target = ∆mK ! −2.5 log10(δ), (7)

where mK,bin is the total apparent Kepler magnitude of the
blended binary system and mK,target is the magnitude of the
Kepler target star. A transit depth of δ = 0.01 corresponds to
∆mK = 5; for δ = 10−3, ∆mK = 7.25; and for δ = 10−4

(approximately an Earth-sized transit of a solar-radius star),
∆mK = 10. This means that no binary system fainter than
mK = 24 can possibly mimic a δ = 10−4 transit around an
mK = 14 star, which is a typical magnitude for a Kepler target.

Using TRILEGAL, we determine the sky density of stars
in this magnitude range within the Kepler field, and thus the
probability of one by chance being projected close to a Kepler
target star, by simulating a 10 deg2 field centered on the center
of the Kepler field. We then simply count the stars within
the desired range of Kepler magnitude (which TRILEGAL
provides). As a fiducial example, the average density of stars
between mK = 15 and mK = 24 (the range corresponding to a
δ = 10−4 transit of an mK = 14 star) is 0.0086 stars arcsec−2.
The probability of any given small circle on the sky containing
one of these stars is then simply the area of the circle multiplied
by this density. Continuing this example (mK = 14, δ = 10−4),
the probability of such a star being within 2′′ of a Kepler target
star is 0.11.

Figure 2. Probability for a possibly blending star to be projected within 2′′

of a Kepler target star, as a function of both Galactic latitude and target star
magnitude, as determined by TRILEGAL simulations.

However, because the Kepler field is quite extended and
centered only a few degrees off the Galactic plane, there is
a considerable gradient in background stellar density across
the field that must be accounted for. To accomplish this, we
simulate 21 different 5 deg2 fields, each centered on one of
the Kepler double-CCD squares. The resulting probabilities
are plotted in Figure 1 as a function of Galactic latitude, for
the magnitude ranges corresponding to mK = 11, 12, 13, 14,
and 15. Recognizing that this blend probability appears to be
exponentially related to Galactic latitude b and that the nature
of the exponential depends on mK , we fit an analytic expression
of the following form:

pblend(b,mK ) = C(mK ) + A(mK )e−b/B(mK ), (8)

where A, B, and C are all polynomial functions of Kepler
magnitude, with the coefficients listed in Table 1. These fits
are valid between mK values of 11 and 15, and b values between
7◦ and 20◦ (the approximate extent of the Kepler field). Figure 2
graphically illustrates the behavior of Equation (8).

2.1.2. Probability of an Appropriate Eclipsing Binary

The probability that a blended star is an appropriately config-
ured eclipsing binary system depends first on the binary fraction
of blending stars and second on both the distribution of binary
properties and the magnitude of the Kepler target star. Of central
importance is that in order for a blended binary to successfully
mimic a Kepler planet transit candidate, it must both have a
diluted primary eclipse shallow enough to look like a planet and
a diluted secondary eclipse either shallow enough so as not to
be detected or geometrically aligned so as not to occur.

The apparent fractional “transit” depth of a blended binary
system depends on the intrinsic binary system eclipse depth δb,
and the relative apparent magnitudes of the Kepler target star
and the blended system:

δ = δb · 10−0.4(mK,bin−mK,target). (9)

The primary and secondary eclipse depths of the binary system
are the following:

δb,pri =

(
R2
R1

)2
F1

F1 + F2
, (10)

3

Raghavan et al. (2010), Mayor et al. (2011), 
Morton et al. (2011), Prsa et al. (2014)
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Fig. 4. From top to bottom, and left to right: i) Radial-velocity data set against time, HARPS as open circles, HIRES as open diamonds, SOPHIE
as open squares; superimposed is the best-fit model for the five di↵erent hypotheses: PLANET (red), BEB (green), BTP (blue), PiB (magenta),
and TRIPLE (cyan). The residuals to the models are shown in the bottom plot. ii) Radial-velocity data set against orbital phase (any linear drift
subtracted). iii) CoRoT red, green, and blue light curves folded in phase and binned. iv) The out-of-transit light-curve showing the secondaries of
the BEB and TRIPLE hypotheses with an arrow. v) The white light curve, plotted twice for all phases and zoomed around the transit. vi) Spectral
energy distributions (solid lines), with the flux integrated in each of the photometric bands(open circles), and observed magnitudes (black dots).
vii) Probability distribution function for the Bayes factor between the planet hypothesis and each false positive hypothesis (see text).

6.2. Hypotheses priors ratios

The hypotheses prior ratios are computed as described in Dı́az
et al. (2014, Sect. 5). Basically, we simulated the stellar field
around the target using the Besançon Galactic model (Robin
et al. 2003), and computed the probability that an unseen blended
star lies within a certain distance of the target, given the NACO
contrast curve (section 3). The binary properties from Raghavan
et al. (2010, and references therein) are used to compute the
probability that any such contaminating star is an eclipsing bi-
nary system. The giant planet statistics from Fressin et al. (2013)
and Bonfils et al. (2013) are used to compute the probability that
a star in the background hosts a transiting planet. Combining
these probabilities, we computed the priors for the BEB and
BTP hypotheses. The same sources are used to compute the prior
probabilities of the TRIPLE hypothesis, the PLANET hypothe-
sis, and the PiB hypothesis. For the latter, we further assumed
that the presence of a planetary companion in orbit around one
of the components of a wide-orbit binary is independent of the

presence of the stellar companion. The hypotheses priors and ra-
tios are listed in Table 4.

6.3. Odds ratios and planet posterior probability

The odds ratios of the planet hypothesis and each false positive
hypothesis is computed as the product of the Bayes factor and
the hypothesis prior ratio. The results are plotted in Figure 5 (left
panel) and listed in Table 4 for each hypothesis. The odds ratio
between the PLANET hypothesis and any false positive hypoth-
esis is log10(p(PLANET|I; D)/p(FP|I; D)) = 3.50 ± 0.46, where
FP is the hypothesis that the candidate is a false positive, inde-
pendently of its kind. Figure 5 (middle panel) shows the distri-
bution of the odds ratio. Around 99.24% (resp. 96.58 %) of the
mass of the distribution is above 150 (resp. 370. i.e. the inverse
probability of being outside 3 � � in a normal distribution).

Under the assumption that the set of hypotheses tested is
complete, and that the sum of the posterior probabilities is, there-
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We compute the distribution of planet sizes, including all or-
bital periods P = 5–100 d, by summing f ðP;RPÞ over all periods.
The resulting planet size distribution is shown in Fig. 3A. Planets
with orbital periods of 5–100 d have a characteristic shape to
their size distribution (Fig. 3A). Jupiter-sized planets ð11 R⊕Þ
are rare, but the occurrence of planets rises steadily with de-
creasing size down to about 2 R⊕. The distribution is nearly flat
(equal numbers of planets per log RP interval) for 1–2 R⊕ planets.
We find that 26 ± 3% of Sun-like stars harbor an Earth-size planet
ð1− 2 R⊕Þ with P = 5–100 d, compared with 1.6 ± 0.4% occur-
rence of Jupiter-size planets ð8− 16 R⊕Þ.
We also computed the distribution of orbital periods, includ-

ing all planet sizes, by summing each period interval of f ðP;RPÞ
over all planet radii. As shown in Fig. 3B, the occurrence of
planets larger than Earth rises from 8.9 ± 0.7% in the P = 6.25–
12.5 d domain to 13.7 ± 1.2% in the P = 12.5–25 d interval and

is consistent with constant for larger periods. This rise and
plateau feature was observed for & 2 R⊕ planets in earlier work
(5, 12).
Two effects lead to minor corrections to our occurrence esti-

mates. First, some planets in multitransiting systems are missed
by TERRA. Second, a small number of eKOIs are false detec-
tions. These two effects are small, and they provide corrections
to our occurrence statistics with opposite signs. To illustrate their
impact, we consider the small and long period (P > 50 d) planets
that are the focus of this study.
TERRA detects the highest SNR transiting planet per system,

so additional transiting planets that cause lower SNR transits are
not included in our occurrence measurement. Using the Kepler
Project catalog (Exoplanet Archive), we counted the number of
planets within the same cells in P and RP as Fig. 2, noting those
that did not yield the highest SNR in the system. Inclusion of
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Fig. 2. Planet occurrence, fðP,RPÞ, as a function of
orbital period and planet radius for P = 6.25–400
d and RP = 0:5− 16 R⊕. As in Fig. 1, detected planets
are shown as red circles. Each cell spans a factor of 2
in orbital period and planet size. Planet occurrence
in a cell is given by fðP,RPÞ= 1=n*

P
iai=ðR*,iCiÞ,

where the sum is over all detected planets within
each cell. Here, ai=Ri is the number of nontransiting
planets (for each detected planet) due to large tilt
of the orbital plane, Ci =CðPi ,RP,iÞ is the detection
completeness factor, and n* = 42,557 stars in the
Best42k sample. Cells are colored according to
planet occurrence within the cell. We quote planet
occurrence within each cell. We do not color cells
where the completeness is less than 25%. Among
the small planets, 1–2 and 2–4 R⊕, planet occur-
rence is constant (within a factor of 2 level) over the
entire range of orbital period. This uniformity sup-
ports mild extrapolation into the P = 200–400 d,
RP = 1− 2 R⊕ domain.
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Fig. 3. The measured distributions of planet sizes (A) and orbital periods (B) for RP > 1 R⊕ and P = 5–100 d. Heights of the bars represent the fraction of Sun-
like stars harboring a planet within a given P or RP domain. The gray portion of the bars show planet occurrence without correction for survey completeness,
i.e., for C = 1. The red region shows the correction to account for missed planets, 1/C. Bars are annotated to reflect the number of planets detected (gray bars)
and missed (red bars). The occurrence of planets of different sizes rises by a factor of 10 from Jupiter-size to Earth-sized planets. The occurrence of planets
with different orbital periods is constant, within 15%, between 12.5 and 100 d. Due to the small number of detected planets with RP = 1− 2 R⊕ and P > 100
d (four detected planets), we do not include P > 100 d in these marginalized distributions.
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study. Representative Solar System planet radii (solid horizontal lines) and Earth’s Teq=255

K (dashed vertical line) are shown. Star symbols indicate the Solar System planets Mars,

Earth, & Venus from left to right, respectively.
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these second and third transiting planets boosts the total number
of planets per cell (and hence the occurrence) by 21–28% over
the P = 50–400 d, RP = 1–4 R⊕ domain (SI Appendix).
Even with our careful vetting of eKOIs, the light curves of

some false-positive scenarios are indistinguishable from planets.
Fressin et al. (7) simulated the contamination of a previous KOI
(4) sample by false positives that were not removed by the Kepler
Project vetting process. They determined that the largest source
of false positives for Earth-size planets are physically bound stars
with a transiting Neptune-size planet, with an overall false-positive
rate of 8.8–12.3%. As we have shown (Fig. 2), the occurrence of
Neptune-size planets is nearly constant as a function of orbital
period, in logP intervals. Thus, this false-positive rate is also nearly
constant in period. Therefore, we adopt a 10% false-positive rate
for planets having P = 50–400 d and RP = 1− 2 R⊕. Planet oc-
currence, shown in Figs. 2 and 3, has not been adjusted to account
for false positives or planet multiplicity. The quoted errors reflect
only binomial counting uncertainties. Note that for Earth-size
planets in the 50–100 and 100–200 d period bins, planet occur-
rence is 5.8 ± 1.8% and 3.2 ± 1.6%, respectively. Corrections due
to false positives or planet multiplicity are smaller than fractional
uncertainties due to small number statistics.

Planet Occurrence and Stellar Light Intensity. The amount of light
energy a planet receives from its host star depends on the lu-
minosity of the star ðLpÞ and the planet-star separation (a).
Stellar light flux, FP, is given by FP =Lp=4πa2. The intensity of
sunlight on Earth is F⊕ = 1:36 kW m−2. We compute Lp using
Lp = 4πR2

pσT
4
eff , where σ = 5:670× 10−8 Wm−2K−4 is the Stefan-

Boltzmann constant. The dominant uncertainty in FP is due to
Rp. Using spectroscopic stellar parameters, we determine FP to
25% accuracy and to 80% accuracy using photometric parame-
ters. We obtained spectra for all 62 stars hosting planets with P >
100 d, allowing more accurate light intensity measurements.
Fig. 4 shows the 2D domain of stellar light flux incident on

our 603 detected planets, along with planet size. The planets
in our sample receive a wide range of flux from their host stars,
ranging from 0.5 to 700 F⊕. We highlight the 10 small ðRP =
1− 2 R⊕Þ planets that receive stellar flux comparable to Earth:
FP = 0:25− 4 F⊕.

Because only two 1–2 R⊕ planets have FP < 1 F⊕, we measure
planet occurrence in the domain, 1–2 R⊕ and 1–4 F⊕. Correcting
for survey completeness, we find that 11 ± 4% of Sun-like stars
have a RP = 1− 2 R⊕ planet that receives between one and four
times the incident flux as the Earth (SI Appendix).

Interpretation
Earth-Size Planets with Year-Long Orbital Periods. Detections of
Earth-size planets having orbital periods of P = 200–400 d are
expected to be rare in this survey. Low survey completeness
ðC≈ 10%Þ and low transit probability (PT = 0.5%) imply that
only a few such planets would be expected, even if they are in-
trinsically common. Indeed, we did not detect any such planets
with TERRA, although the radii of three planets (KIC-4478142,
KIC-8644545, and KIC-10593626) have 1σ confidence intervals
that extend into the P = 200–400 d, RP = 1–2 R⊕ domain. We can
place an upper limit on their occurrence: f < 12% with 95%
confidence using binomial statistics. We would have detected
one or two such planets if their occurrence was higher than 12%.
However, one may estimate the occurrence of 1–2 R⊕ planets

with periods of 200–400 d by a modest extrapolation of planet
occurrence with P. Fig. 5 shows the fraction of stars with 1–2 R⊕
planets, whose orbital period is less than a maximum period, P,
on the horizontal axis. This cumulative period distribution shows
that 20.4% of Sun-like stars harbor a 1–2 R⊕ planet with an
orbital period, P < 50 d. Similarly, 26.2% of Sun-like stars harbor
a 1–2 R⊕ planet with a period less than 100 d. The linear increase
in cumulative occurrence implies constant planet occurrence per
logP interval. Extrapolating the cumulative period distribution
predicts 5:7+1:7−2:2% occurrence of Earth-size ð1− 2 R⊕Þ planets
with orbital periods of ∼1 y (P = 200–400 d). The details of our
extrapolation technique are explained in SI Appendix. Extrapo-
lation based on detected planets with P < 200 d predicts that
5:7+1:7−2:2% of Sun-like stars have an Earth-size planet on an Earth-
like orbit (P = 200–400 d).
Naturally, such an extrapolation carries less weight than a di-

rect measurement. However, the loss of Kepler’s second reaction
wheel in May 2013 ended observations shortly after the com-
pletion of the nominal 3.5-y mission. We cannot count on any
additional Kepler data to improve the low completeness to Earth
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Fig. 4. The detected planets (dots) in a 2D domain similar to Figs. 1 and 2. Here, the 2D domain has orbital period replaced by stellar light intensity, incident
flux, hitting the planet. The highlighted region shows the 10 Earth-size planets that receive an incident stellar flux comparable to the Earth: flux = 0.25–4.0
times the flux received by the Earth from the Sun. Our uncertainties on stellar flux and planet radii are indicated at the top right.
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Sun-like stars (42 557 GK dwarfs) 

11 ± 4% of Sun-like stars harbor a planet 
with Rp = 1 − 2 R⊕ and FP = 1 − 4 F⊕ 

Occurrence of Earth analogs
22 ± 8% of Sun-like stars 
harbor a Earth size planet 
in the HZ - extrapolation!



Conclusions
•  High precision photometry light curves are a gold mine for planet science 

and stellar physics.  

•  Various planet population domains are now open to exploration: small size 
planets, multi-planet systems, circumbinary planets ….   Diversity is the 
rule! 

•  CoRoT and mostly Kepler provide constraints on planet statistics: 
occurrence rate, distribution, properties… based on their radius. More 
characterized planets are needed in the small-size domain  

•  Packed multi-planet systems occurrence is high. TTVs = efficient technique 
to get the planet masses based on photometric data only. Some 
discrepancy exists between RVs and TTVs mass - should be further 
explored. Benchmark to test formation and dynamical evolution 

•  Planet validation tools are needed to establish the planetary nature of 
small and cool planets
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PLATO: caracterisation

exoplanètes rocheuses 
connues 

Kepler: fréquence des planètes 
telluriques

CHEOPS, TESS: 
caractérisation

PLATO will overcome all the 
limitations we’re facing in the quest of 

Earth analogs 
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