Galactic Astroarchaelogy: constraints on formation and evolution of galaxies

Francesca Matteucci, Trieste University Nice, June 7th 2016

Collaborators:Cescutti, Chiappini, Grieco, Romano, Spitoni, Vincenzo

Outline of the talk

- Basic ingredients for building chemical evolution models
- Chemical abundances as tools to infer the star formation history of galaxies
- The Milky Way
- The dwarf spheroidals and ultra faint dwarfs of the Local Group

Astroarchaeology

- Chemical abundances tell us about the nucleosynthesis as well as the formation and evolution of galaxies
- Light elements (H, D, He, Li) were synthesized during the Big Bang
- All the elements with A>12 were formed inside stars
- Stars produce new elements and then restore them into the ISM. This process is called chemical evolution

Basic Ingredients of Chemical Evolution

Initial conditions (open/closed-box; initial) chemical composition) The stellar birthrate function: SFRxIMF The stellar yields (i.e. the mass restored into the ISM by a star of a given mass in the form of a given chemical element Gas flows: infall, outflow, inflow

The Initial Mass Function

The IME has been derived for the solar vicinity and is expressed as a power law

The parametrization of the SFR

The most common parametrization is the socalled Schmidt (1959) law, where the SFR is proportional to some power of the gas density

 $SFR = \nu \sigma_{gas}^k$

Kennicutt (1998) suggested k=1.4 from studying star forming galaxies
 The constant in front of the gas density is the SF efficiency (expressed in time⁻¹)

Kennicutt's law

The Stellar Yields

Low and intermediate mass stars (0.8-8 Msun): produce He, N, C and heavy s-process elements. They die as C-O WDs, when single, and can die as Type Ia SNe when binaries
 Massive stars (M>8-10 Msun, core-collapse SNe): they produce alpha-elements (O, Mg..), some Fe, light s-process elements and r-process elements

 Type Ia SNe produce mainly Fe (0.6-0.7Msun per SN)

Different supernovae

SN la (artistic view)

SN II (Cassiopea A)

Supernova Progenitors

Core-collapse SNe originate from massive stars (M> 10Msun), they can be of Type II, Ib and Ic. They leave neutron stars or black holes as remnants. Type lb/c SNe are the most massive and are connected to GRBs (lifetimes < 30Myr) Type I a SNe are thought to originate from C-O white dwarfs (WD) in binary

systems (lifetimes >30 Myr)

Stellar yields: cc SNe Nomoto+06

Type la Supernovae

- Double-Degenerate scenario (Iben & Tutukov, 1984): two C-O WDs merge after loosing angular momentum due to gravitational wave radiation
- Single-degenerate scenario (e.g. Whelan & Iben 1974): a binary system with a C-O white dwarf plus a MS star. When the star becomes RG it starts accreting mass onto the WD
- The explosion in both cases occurs when the Chandrasekhar mass is reached

Delay time distributions for Type Ia SNe (SD left DD right). Minimum delay 35Myr

Gas flows: infall

Gas can be accreted or lost from a galaxy
 The most common parametrization of the accretion rate is an exponential law

$$IR = A(R)e^{-t/\tau(R)}$$

Gas Flows:outflow

Outflows and galactic winds are seen in galaxies
 The most common parametrization is

Wind=CxSFR

The wind rate is proportional to the star formation rate (Martin, 2000,2004)

Basic Equations: no IRA

 $G_i(t) = -\psi(t)X_i(t)$ $+\int_{M_m}^{M_{Bm}}\psi(t-\tau_m)Q_{mi}(t-\tau_m)\phi(m)dm$ $+A\int_{M_{m}}^{M_{BM}}\phi(m)$ $\cdot [\int_{0.5}^{0.5} f(\mu)\psi(t-\tau_{m2})Q_{mi}(t-\tau_{m2})d\mu]dm$ $+B\int_{M_m}^{M_{BM}}\psi(t-\tau_m)Q_{mi}(t-\tau_m)\phi(m)dm$ $+\int_{M_{mi}}^{M_U}\psi(t-\tau_m)Q_{mi}(t-\tau_m)\phi(m)dm$ $+X_{A_i}A(t) - X_iW(t)$

How did the Milky Way form? The Formation of the MW from

Astroarchaelogy

- The two-infall model of Chiappini, FM & Gratton (1997) predicts two main episodes of gas accretion
- During the first one the halo, bulge and all or part of thick disk formed, the second gave rise to the thin disk. SF efficiency is 1/Gyr

This model can reproduce most of the observational data and allows us to derive the formation timescales

Chemical evolution of the Milky Way (Romano+10)

- Two sets of yields are tested in the framework of two-infall model
- The best are those represented by a continuous line: Kobayashi + 06 for massive stars and Geneva yields for rotating stars plus Karakas00 for LIMS
- The assumed IMF is that of Kroupa+93 which is the best for S.N.

The G-dwarf Metallicity Distribution: the effect of the infall

G-dwarf metallicity distribution compared with predictions of the two-infall model (Kotoneva et al. 2003) The assumed (8 Gyr) timescale for disk formation at solar ring is a very important parameter

More recent data on G-dwarfs

G-dwarf metallicity distribution by Adibekyan +2013 (pink histogram) Furhmann (2011) (blue histogram) Model with radial flows from Spitoni +2015 (cyan curve) no migration and always a timescale of

A three-infall model (Micali, FM +13: the thick disk)

More recent data (two parallel sequences for thick and thin disk) Apogee data (Hayden et al. 2015) GES data (Rojas-Arriagata+ 2016)

The time-delay model and the star formation rate in galaxies

- Predicted [alpha/Fe] ratios for different SFR histories (a more modern version of FM & Brocato 1990)
- A strong starburst (dashed line), a SFR like in the solar vicinity (dotted) and a slow SFR (continuous) like in Magellanic Irregulars or Dwarf Spheroidals

The Galactic Bulge

- Model (black, Cescutti & FM 2011): fast Bulge formation (0.3 -0.5Gyr) and IMF flatter than in S.N.
- High SF efficiency 20/Gyr
- Turning point at larger than solar Fe (effect of the time-delay model)
- Data from giants and dwarfs. Bensby & al. 2010; Alves-Brito & al. 2010

Two Bulge populations? Grieco +2012

Two populations: i) classical bulge, fast formation (0.3 Gyr, red line), ii) younger stars related to the bar, longer formation (3-4 Gyr)

Model by Grieco, FM & al. 12 compared to Hill & al's (2011) data
Salpeter IMF
MDF convolved with an error of 0.25 dex

The Galactic centre (inner 200 pc)

Grieco et al. (2015) modeled the chemical evolution of the Galactic centre (inner 200 pc)

 Data Ryde & Schultheis (2015), 9 M-giants

 The best agreement is reached by adopting a Salpeter IMF, a timescale of 0.7 Gyr and SF efficiency of 25 Gyr⁻¹

The Galactic centre ([alpha/Fe])

 The predicted [alpha/Fe] ratios for different IMFs, a SF efficiency of 25/Gyr and a timescale of 0.7 Gyr

Ca seems to be a problem. Too lower stellar yields?

The inner Bulge

- Ryde et al. (2015) presented data for 28 M giants the inner 500 pc of the Bulge (red dots)
- Black dots are dwarfs from Bensby et al. (2013)
- The comparison with the model of Grieco+(2015) suggests a fast formation (0.7 Gyr), high SF efficiency (25 Gyr⁻¹) Red line is a model with lower Mg and Si yields

Last data on the Bulge from GES

- Data for the Bulge from Rojas-Arriagata+ 2016
 The red line is the model for the classical bulge from Grieco, FM et al. (2012, 2015), yields from Romano+(2000)
- The fit requires a timescale for Bulge formation of 0.3 Gyr and a Salpeter IMF, as already suggested for the classical Bulge

Abundance Gradients in the Galactic Disk: the effect of radial flows

 Different models with and without radial inflows (Spitoni & FM 2011)

 Black line, (no flows no threshold, inside-out).
 Red line (radial flows of speed 1 Km/sec, insideout)

 Blue line a variable speed for radial flows and inside-out

Time-scales from Galactic Astroarchaelogy

- The inner stellar Halo must have formed on a timescale of 1.5 Gyr whereas the outer Halo could have formed on a longer timescale
- The local disk must have assembled by gas accretion on a time scale from 6-8 Gyr and the timescale increases with galactocentric radius
- The thick disk must have formed more quickly than the thin disk (2-2.5 Gyr)
- The Bulge must have formed on a time no longer than 0.3-0.7 Gyr with flatter IMF than the solar neighbourhood

[Alpha/Fe] ratios in Dwarf Spheroidals (Shetrone+02)

Dwarf Spheroidals vs. Milky Way

The [alpha/Fe] ratios in dSphs evolve differently as a function of [Fe/H] There is some overlapping of the [alpha/Fe] ratios only at low metallicity Can the dSphs have been the building blocks of the Galactic halo? Chemical abundances should reveal it

Chemical evolution of dSphs: standard model

- Lanfranchi & FM (2003, 2004) proposed a model which assumes a SFH as derived by the CMDs.
 Initial baryonic masses 5x10⁸ Msun
- SN feedback induces a strong outflow. DM ten times LM but diffuse (M/L today of the order of 100)
 SFR less efficient than in the MW and going on for 8 Gyr

Specific Models for dSphs: Carina

 The best model for Carina by Lanfranchi, FM & Cescutti (2006) compared with data from Koch & al.(2008)

 Four bursts of SF are considered as suggested by the C-M diagram

Specific Models for dSphs: Carina

The stellar metallicity distribution predicted for Carina and observed by Koch & al. (2005) SF history from Rizzi et al. 03. Four bursts of 2 Gyr, SF efficiency of 0.15 Gyr⁻¹ Salpeter IMF Wind=7xSFR

More recent models for Carina compared to the Milky Way (Vincenzo, FM et al. 2014). Data from:Shetrone+03,Koch+08,Venn +12,Lemasle+12

The Ultra Faint Dwarfs (Vincenzo, FM et al. 2014)

- Better candidates for the Galactic halo are the ultra-faint-dwarfs (UFD) ? No
- Dots from Aden+11 refer to Hercules, black points are the MW and blue points the dSphs
 Models with very low SF efficiency

The Ultra Faint Dwarfs (Vincenzo, FM+2014)

Models for Hercules (grey) compared to the prediction of the two-infall model for the MW (red). Blue data for Hercules are from Koch et al. (2013). Grey dots are MW stars (Frebel+2009) The [Ba/Fe] ratio is quite different at low [Fe/H] in the MW and UfDs

Chemical evolution of dSphs from astroarchaeology

The chemical evolution of dSphs in general can be reproduced by assuming an extended period of SF, a poorly efficient SFR and a quite efficient galactic wind from SN feedback

The [X/Fe] ratios of alpha and heavy elements suggest different histories of SF in the MW, dSphs and UfDs

Same [alpha/Fe] ratios at [Fe/H]<-3.0 dex is not necessarily a proof that the MW halo has formed by accretion of dSphs. Other abundance ratios such as [Ba/Fe] could solve the problem