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Outline of the talk 

n  Basic ingredients for building chemical 
evolution models 

n  Chemical abundances as tools to infer the 
star formation history of galaxies 

n  The Milky Way 
n  The dwarf spheroidals  and ultra faint 

dwarfs of the Local Group 
 



Astroarchaeology 

n  Chemical abundances tell us  about the 
nucleosynthesis as well as the formation and 
evolution of galaxies 

n  Light elements (H, D, He, Li) were synthesized 
during the Big Bang   

n  All the elements with A>12 were formed inside 
stars 

n  Stars produce new elements and then restore 
them into the ISM. This process is called 
chemical evolution 



Basic Ingredients of Chemical 
Evolution 

n  Initial conditions (open/closed-box; initial 
chemical composition) 

n  The stellar birthrate function: SFRxIMF 
n  The stellar yields (i.e. the mass restored 

into the ISM by a star of a given mass in 
the form of a given chemical element 

n  Gas flows: infall, outflow, inflow 
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The Initial Mass Function 
n  The IMF has been derived for the solar vicinity 

and is expressed  as a  power law 



The parametrization of the SFR 

 
n  The most common parametrization is the so-

called Schmidt (1959) law, where the SFR is 
proportional to some power of the gas density 

 
 
n  Kennicutt (1998) suggested k=1.4 from studying 

star forming galaxies 
n  The constant in front of the gas density is the SF 

efficiency (expressed in time-1 ) 

 
                   



Kennicutt’s law 



The Stellar Yields 

n  Low and intermediate mass stars (0.8-8 Msun): 
produce He, N, C and heavy s-process 
elements. They die as C-O  WDs, when single, 
and can die as Type Ia SNe when binaries 

n  Massive stars (M>8-10 Msun, core-collapse 
SNe): they produce alpha-elements (O, Mg..),  
some Fe, light s-process elements and r-process 
elements  

n  Type Ia SNe produce mainly Fe (0.6-0.7Msun  
per SN) 



Different supernovae 
SN Ia (artistic view) SN II (Cassiopea A) 



Supernova Progenitors 

n  Core-collapse SNe originate from massive 
stars (M> 10Msun), they can be of Type 
II,Ib and Ic. They leave neutron stars or 
black holes as remnants. Type Ib/c SNe  
are the most massive and are connected 
to GRBs (lifetimes < 30Myr) 

n  Type I a SNe  are thought to originate 
from C-O white dwarfs (WD) in binary 
systems (lifetimes >30 Myr ) 

 



Stellar yields: cc SNe Nomoto+06 



Type Ia Supernovae 

n  Double-Degenerate scenario (Iben & Tutukov, 
1984): two C-O WDs merge after loosing 
angular momentum due to gravitational wave 
radiation 

n  Single-degenerate scenario (e.g. Whelan & Iben 
1974): a binary system with a C-O white dwarf 
plus a MS star. When the star becomes RG it 
starts accreting mass onto the WD 

n  The explosion in both cases occurs when the 
Chandrasekhar mass  is reached 



Delay time distributions for Type Ia SNe 
(SD left  DD right). Minimum delay 35Myr 



Gas flows: infall 

n  Gas can be accreted or lost from a galaxy 
n  The most common parametrization of the  
accretion rate is an exponential law 



Gas Flows:outflow 

n  Outflows and galactic winds  are seen in 
galaxies 

n  The most common parametrization is    
 
             Wind=CxSFR 
 
n  The wind rate is proportional to the star 

formation rate  (Martin, 2000,2004)        



Basic Equations: no IRA 



How did the Milky Way form? The 
Formation of the MW from 
Astroarchaelogy 
n  The two-infall model of 

Chiappini, FM & Gratton 
(1997)  predicts two main 
episodes of gas accretion 

n  During the first one the 
halo, bulge and all or part 
of thick disk formed, the 
second gave rise to the 
thin disk. SF efficiency is 
1/Gyr 

n  This model can 
reproduce most of the 
observational data and 
allows us to derive the 
formation timescales 

  



Chemical evolution of the Milky 
Way (Romano+10) 

n  Two sets of yields are 
tested in the framework of 
two-infall model 

n  The best are those 
represented by a 
continuous line: Kobayashi 
+ 06 for massive stars and 
Geneva yields for rotating 
stars plus Karakas00 for 
LIMS  

n  The assumed IMF is that of 
Kroupa+93 which is the 
best for S.N. 

 



The G-dwarf Metallicity 
Distribution: the effect of the infall 

n  G-dwarf metallicity 
distribution compared 
with predictions of the 
two-infall model 
(Kotoneva et al. 2003) 

n  The assumed (8 Gyr) 
timescale for disk 
formation at solar ring 
is a very important 
parameter 



More recent data on G-dwarfs 
n  G-dwarf metallicity 

distribution by 
Adibekyan +2013 
(pink histogram) 

n  Furhmann (2011) 
(blue histogram) 

n  Model with radial 
flows from Spitoni
+2015 (cyan curve) 
no migration and 
always a timescale of 
8 Gyr 



A three-infall model (Micali, FM
+13: the thick disk) 



More recent data (two parallel 
sequences for thick and thin disk) 
Apogee data (Hayden et 
al. 2015) 

GES data ( Rojas-
Arriagata+ 2016) 



The time-delay model and the 
star formation rate in galaxies 

n  Predicted [alpha/Fe] 
ratios for different SFR 
histories (a more modern 
version of  FM & Brocato 
1990) 

n  A strong starburst 
(dashed line), a SFR like 
in the solar vicinity 
(dotted) and a slow SFR 
(continuous) like in 
Magellanic Irregulars or 
Dwarf Spheroidals 



The Galactic Bulge 

n  Model (black, Cescutti & 
FM 2011): fast Bulge 
formation (0.3 -0.5Gyr) 
and IMF flatter than in 
S.N. 

n  High SF efficiency 20/Gyr 
n  Turning point at larger 

than solar Fe (effect of 
the time-delay model) 

n  Data from giants and 
dwarfs. Bensby & al. 
2010; Alves-Brito & al. 
2010 

 



Two Bulge populations? Grieco
+2012 
n  Two populations: i) 

classical bulge, fast 
formation (0.3 Gyr, 
red line), ii) younger 
stars related to the 
bar, longer formation 
(3-4 Gyr) 

n  Model by Grieco, FM 
& al. 12 compared to 
Hill & al’s (2011) data 

n  Salpeter IMF 
n  MDF convolved with 

an error of 0.25 dex 



The Galactic centre (inner 200 pc) 
n  Grieco et al. (2015) 

modeled the chemical 
evolution of the Galactic 
centre (inner 200 pc) 

n  Data Ryde   & Schultheis 
(2015), 9 M-giants 

n  The best agreement is 
reached by adopting a 
Salpeter IMF, a timescale 
of 0.7 Gyr and SF 
efficiency  of 25 Gyr-1 



The Galactic centre ([alpha/Fe]) 

n  The  predicted 
[alpha/Fe] ratios for 
different IMFs, a SF 
efficiency of 25/Gyr  
and a timescale of 
0.7 Gyr 

n  Ca seems to be a 
problem. Too lower 
stellar yields? 



The inner Bulge 
n  Ryde et al. (2015) 

presented data for  28 M 
giants the inner 500 pc of 
the Bulge (red dots) 

n  Black dots are dwarfs 
from Bensby et al. (2013) 

n  The comparison with the 
model of Grieco+(2015) 
suggests a fast formation 
(0.7 Gyr), high SF 
efficiency (25 Gyr-1)  

n Red line is a model with 
lower Mg and Si yields 

      

 



Last data on the Bulge from GES 
n  Data for the Bulge from 

Rojas-Arriagata+ 2016 
n  The red line is the model 

for the classical bulge 
from Grieco , FM et al. 
(2012, 2015), yields from 
Romano+(2000) 

n  The fit requires a 
timescale for Bulge 
formation of 0.3 Gyr and 
a Salpeter IMF, as 
already suggested for the 
classical Bulge 



Abundance Gradients in the Galactic 
Disk: the effect of radial flows  
n  Different models with and 

without radial inflows 
(Spitoni & FM 2011) 

n  Black line, (no flows no 
threshold, inside-out). 
Red line (radial flows of 
speed 1 Km/sec, inside-
out) 

n   Blue line a variable 
speed for radial flows and 
inside-out 



Time-scales from Galactic 
Astroarchaelogy 
n  The inner stellar Halo must have formed on a 

timescale of  1.5 Gyr whereas the outer Halo  
could have formed on a longer timescale   

n  The local disk must have assembled by gas 
accretion on a time scale from 6-8 Gyr and the 
timescale increases with galactocentric radius 

n  The thick disk must have formed more quickly 
than the thin disk (2-2.5 Gyr)  

n  The Bulge must have formed on a time no 
longer than 0.3-0.7 Gyr with flatter IMF than the 
solar neighbourhood 

  



[Alpha/Fe] ratios in Dwarf 
Spheroidals (Shetrone+02) 



Dwarf Spheroidals vs. Milky Way 

n  The [alpha/Fe] ratios in dSphs evolve 
differently as a function of [Fe/H] 

n  There is some overlapping of the  
   [alpha/Fe] ratios only at low metallicity 
n  Can the dSphs have been the building 

blocks of the Galactic halo?  
n  Chemical abundances should reveal it 



Chemical evolution of dSphs: 
standard model 

n  Lanfranchi & FM (2003, 
2004) proposed a model 
which assumes a SFH as 
derived by the CMDs. 
Initial baryonic masses 
5x108 Msun 

n  SN feedback induces a 
strong outflow. DM ten 
times LM but diffuse (M/L 
today of the order of 100) 

n  SFR less efficient than in 
the MW and going on for 
8 Gyr 



Specific Models for dSphs: Carina 

n  The best model for 
Carina by Lanfranchi,  
FM & Cescutti ( 2006) 
compared with data 
from Koch & al.(2008) 

 
n  Four bursts of SF are 

considered as 
suggested by the C-M 
diagram  



Specific Models for dSphs: Carina 

n  The stellar metallicity 
distribution predicted for 
Carina and observed by 
Koch & al. (2005) 

n  SF history from Rizzi et 
al. 03. Four bursts of 2 
Gyr, SF efficiency of 

    0.15  Gyr-1           
n  Salpeter IMF 
n  Wind=7xSFR 



More recent models for Carina compared to 
the Milky Way (Vincenzo, FM et al. 2014). 
Data from:Shetrone+03,Koch+08,Venn
+12,Lemasle+12  



The Ultra Faint Dwarfs (Vincenzo, 
FM et al. 2014) 
n  Better candidates for 

the Galactic halo are 
the ultra-faint-dwarfs 
(UFD) ? No 

n  Dots from Aden+11 
refer to  Hercules, 
black points are the 
MW and blue points 
the dSphs 

n  Models with very low 
SF efficiency 



The Ultra Faint Dwarfs (Vincenzo, 
FM+2014)  

n  Models for Hercules 
(grey) compared to the 
prediction of the two-infall 
model for the MW (red). 
Blue data for Hercules 
are from Koch et al. 
(2013).  Grey dots are 
MW stars (Frebel+2009) 

n  The [Ba/Fe] ratio is  quite 
different at low [Fe/H] in 
the MW and UfDs 



Chemical evolution of dSphs from 
astroarchaeology 

n  The chemical evolution of dSphs in general can 
be reproduced by assuming an extended period 
of SF, a poorly efficient SFR and a quite efficient 
galactic wind from SN feedback 

n  The [X/Fe] ratios of alpha and heavy elements 
suggest different histories of SF in  the MW, 
dSphs and UfDs 

n  Same [alpha/Fe] ratios at [Fe/H]<-3.0 dex is not 
necessarily a proof that the MW halo has formed 
by accretion of dSphs. Other abundance ratios  
such as [Ba/Fe] could solve the problem 


