Molecular layers in the dust formation zone of AGB stars

David Gobrecht

Collaborators:
Sergio Cristallo, Oscar Straniero, Luciano Piersanti
Isabelle Cherchneff, Arkaprabha Sarangi, Stefan Bromley, John Plane

Seminar
Nice 4th of June 2015
Overview

• AGB stars: types & evolution
• The inner wind of AGB stars
• Stationary wind vs. Dynamic pulsations
• Chemical model for the gas phase, cluster formation routes and dust grains
• Results on molecules & dust clusters
• Dust condensation & grain size distributions
• Outlook & Conclusions
AGB stars

Late stage evolution of low- and intermediate stars ($M^{\text{ZAMS}} < 8 \, M_\odot$)

Cool photospheres ($T = 2000 - 3000 \, \text{K}$) and high luminosities ($L \sim 10^3 - 10^4 \, L_\odot$)

High mass loss rates ($10^{-7} - 10^{-4} \, M_\odot/\text{yr}$) due to the presence of dust
Evidence for dust

Spectral dust features (Silicates & SiC):

- Forsterite (Mg_2SiO_4) in the lab (69 μm):
 - Bowey 2013

- Other features:
 - MgS at 30 μm
 - PolyAromatic Hydrocarbons (PAHs) at 3.3, 6.2, 7.7, 8.8, 12.7 and 16.4 μm → (hydrogenated) amorphous carbon
Chemical types of AGB stars

M-type: oxygen-rich, $C/O < 1$

S-type: $C/O \sim 1$

C-type: carbon-rich, $C/O > 1$

... at the photosphere

Low mass: 3^{rd} dredge up mixes carbon to the photosphere $\rightarrow C/O$ increases

Intermediate mass: Hot bottom burning converts C in N and other CNO products $\rightarrow C/O$ decreases

Hoefner 2009
Thermodynamic equilibrium (TE) predicts the presence of:

- CO, C, HCN, CS, C_2H_2, CH, CN in the C-rich case
- CO, H$_2$O, SiO, OH, TiO in the O-rich case

$\rightarrow E_{\text{bind}}(\text{CO}) = 11.2$ eV \rightarrow locks up lesser abundant element

BUT observed are also:

- C-bearing molecules in O-rich AGBs: HCN, CS, OCS, CN, CO$_2$
- O-bearing species in carbon stars: H$_2$O, OH, SiO

TE cannot account for these observed molecules

\Rightarrow Kinetic description is necessary for the chemistry
AGB star structure

Stellar wind driven by pulsations and dust grains

Large convective envelope

Energy generation proceeds in thin burning shells

Degenerate (non-burning) core consisting of carbon and oxygen

Lattanzio 2004
The inner wind of AGBs

IK Tau

AGB star

Radius

Pulsating Photosphere

T = 2200 K
N = 10^{14} cm^{-3}

Inner envelope
Dust formation

500-42'000 K
10^{6} - 10^{16} cm^{-3}

Fully accelerated wind

100 K
10^{6} cm^{-3}

decin 2010

Interstellar
UV radiation

CO, H_{2}O
SiO

HCN, CS, CO_{2}
SiS, PN, AIOH

NH_{3}, SO_{2}
H_{2}S
daughter species produced by photo reactions of mother species
Energy scale in the wind
Timescales for AGB stars

Main sequence: \(~ 10^7 - 10^{10} \) years

Time on the (TP) AGB: \(~ 10^6 \) years

Time between dredge-up (mixing) episodes: \(~ 10^4 \) years

Maercker 2009

Timescale in the wind:
- Expansion timescale: \(\frac{R_{\text{env}}}{V_{\text{exp}}} \) ~
- Time between pulsations: \(~ 1 \) year
- Chemical reactions: \(\frac{1}{k} \) ~ ms to hours
- Dust growth: coagulation & surface growth
Physics of the inner wind

Periodic shocks cross the stellar atmosphere

→ ambient gas is compressed, heated and accelerated

→ formation of dense and warm gas layers gravitationally bound to the star

→ favourable conditions for molecule, cluster & dust grain formation

→ Pulsations & dust are necessary for mass loss

Nowotny 2010
Periodic pulsation model for a galactic Mira star: IK Tau

Pre-shock profiles:

\[T(r) = T_\ast \left(\frac{r}{R_\ast} \right)^{-0.6} \quad n(r) \propto n_\ast \exp \left(-\frac{r}{H} \right) \]

Scale height

\[H = \frac{k_B T}{\mu m_H g} = \frac{k_B T R^2}{\mu m_H GM} \]

Willson & Bowen 1984, Cherchneff 1992

Post-shock profiles:
- Rankine-Hugoniot jump conditions
- Gas excursions on ballistic trajectories

Based on mass,

\[\frac{d\rho}{dt} = \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial z} \right) \rho = -\rho (\nabla \cdot v) \]

momentum, and

\[\frac{dv}{dt} + \frac{1}{\rho} \frac{\partial p}{\partial z} = -g \]

energy

\[\frac{dp}{dt} + \gamma \rho (\nabla \cdot v) = 0 \]

Parameters for IK Tau

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_\ast)</td>
<td>2200 K</td>
</tr>
<tr>
<td>(M_\ast)</td>
<td>1 (M_\odot)</td>
</tr>
<tr>
<td>(R_\ast)</td>
<td>2.5 (\times 10^{13}) cm</td>
</tr>
<tr>
<td>(\nu_s)</td>
<td>25 – 32 (\text{km s}^{-1})</td>
</tr>
<tr>
<td>(P)</td>
<td>470 days</td>
</tr>
<tr>
<td>(n(1R_\ast))</td>
<td>3.6 (\times 10^{14}) cm(^{-3})</td>
</tr>
<tr>
<td>(r_s)</td>
<td>1 (R_\ast)</td>
</tr>
<tr>
<td>(C/O)</td>
<td>0.75</td>
</tr>
<tr>
<td>(\dot{M})</td>
<td>(0.4 - 3) (\times 10^{-5}) (M_\odot/\text{yr})</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>1.9 (\times 10^{-2})</td>
</tr>
</tbody>
</table>
Gas-phase chemistry

Molecular detections in inner oxygen-rich AGB winds:

\(\text{H}_2\text{O}, \text{OH, SiO, SiS, NaCl, CO, CO}_2, \text{HCN, CS, SO, SO}_2, \text{NH}_3 \)

\(\text{PN, PO} \)

Chemical network contains termolecular & bimolecular (neutral-neutral, collisional fragmentation, radiative association) processes – no ions

<table>
<thead>
<tr>
<th>Reaction type</th>
<th>Reaction formulation</th>
<th>Gas conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimolecular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal decomposition</td>
<td>(\text{AB} \rightarrow \text{A} + \text{B})</td>
<td>High T</td>
</tr>
<tr>
<td>Bimolecular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral-exchange</td>
<td>(\text{AB + C} \rightarrow \text{A + CB})</td>
<td>T dependent</td>
</tr>
<tr>
<td>Collisional dissociation</td>
<td>(\text{AB + M} \rightarrow \text{A + B + M})</td>
<td>High T</td>
</tr>
<tr>
<td>Radiative association</td>
<td>(\text{A + B} \rightarrow \text{AB} + \gamma)</td>
<td>T independent</td>
</tr>
<tr>
<td>Termolecular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termolecular formation</td>
<td>(\text{A + B + M} \rightarrow \text{AB + M})</td>
<td>(Very) high n</td>
</tr>
</tbody>
</table>

17 elements
105 molecules
426 reactions

GOAL: Reproduce these molecules in the observed amounts
Chemical network

Bimolecular reaction: \(A + B \rightarrow C + D \)

Change in number density of species \(C \):

\[
\frac{dn(C)}{dt} = k_{AB} n(A)n(B)
\]

\[
k_{AB} = \alpha \left(\frac{T}{298 \text{ K}} \right)^\beta \exp \left(\frac{-E_a}{RT} \right)
\]

Set of reactions: Arrhenius reaction rate

\[
\frac{dn_i}{dt} = \sum_{j,k} k_{jk} n_j n_k + \sum_{j,k} k_{jkM} n_j n_k n_M - n_i \sum_l k_{il} n_l - n_i \sum_n k_n
\]

→ set of stiff, coupled, non-linear ordinary differential equations (ODEs)

→ ODEs subject to varying temperature and densities
Cluster nucleation routes

Chemical network involves formation pathways to dimers of alumina (Al$_2$O$_3$) & forsterite (Mg$_2$SiO$_4$), enstatite (MgSiO$_3$) of metal oxides (SiO, MgO, FeO, TiO), and pure metal clusters (Fe, Al, Si)

- Structure determination by a semi-classical Monte-Carlo-based candidate search & subsequent quantum Density Functional Theory (DFT) calculations
- DFT analysis yields thermochemical properties, which indicate trends for reaction mechanisms and kinetics

$\Delta G = \Delta H - T\Delta S$

Energetically favoured alumina tetramers Al_8O_{12}
Cluster nucleation routes

Silicates: forsterite dimers $\text{Mg}_4\text{Si}_2\text{O}_8$

- SiO dimerisation too slow to start silicate nucleation
- Nucleation proceeds via HSiO, $\text{H}_2\text{Si}_2\text{O}_2$ & $\text{H}_2\text{Si}_2\text{O}_3$ formation
- Growth via successive oxidation & Mg inclusion steps
- Efficient mechanism to synthesise silicate dimers (enstatite and forsterite) between $\sim 4 \, R_*$ and $6 \, R_*$
Dust grain condensation

Formalism based on Brownian thermal motion, which accounts for the scattering, fragmentation, and coagulation of the grains \(\text{Plane 2013, Sarangi & Cherchneff 2014} \)

→ Grains size distributions are derived for silicates of forsterite and enstatite stoichiometry, and alumina.

→ Grains are assumed to be spherical, volume conserving and stable to (stellar) radiation

Timescales for dust condensation?
Consider from hydro models \(\text{Bowen 1988, Nowotny 2010} \)

Dust grains keep growing over several pulsation periods, whereas gas phase molecules reform within one period.

• Drift velocities at \(r > 3 \, R_* \) for silicates – 1.5 kms\(^{-1}\) correspond to two pulsations to cover 0.5 \(R_* \).
Results: Molecules in IK Tau

CO, H$_2$O, SiO, SiS, HCl, AIOH & PN form close to the star as soon as gas relaxes and cools down.

Gobrecht 2015 submitted

Some molecules are more shock chemistry-dependent. C-bearing species form from CO breaking by shocks SO, HCN, CS, CO$_2$
Results: Molecules in IK Tau

- Modelled abundances for 12 molecules at 6 R.* agree well with observations
- Validate shock chemistry scenario → strong impact of shocks on the gas and solid phases of the inner wind
- Discrepancy for SO$_2$

Our parent species include

CO, H$_2$O, SiO, SiS, PN, SO, HCN, CS, CO$_2$, AlOH, TiO, HCl & NaCl

Gobrecht 2015 submitted
Results: Dust clusters in IK Tau

Alumina dimers Al_4O_6:

Form at 1 R_* when $T_{\text{gas}} < 2000$ K

Abundance of dimers on the low side

Other formation channels, which deplete AlOH?
Results: Dust clusters in IK Tau

Silicates: forsterite dimers $\text{Mg}_4\text{Si}_2\text{O}_8$

Start forming at 3.5 R_* from HSiO dimerisation.
Grain size distributions: alumina

Large grains > 0.02 μm are already formed at 1, because gas densities are high in the postshock gas.
- Forsterite grains grow to larger sizes with increasing number of pulsations and radius.
- Dust/gas mass ratio after 8 R* agrees with observations.
- Grain size peaks at 0.02 μm, which is a bit low (from obs. a = 0.1 μm).
A factor x10 in gas density results in grain size distributions peaking at ~ 0.1 μm \(\rightarrow\) inhomogeneous wind will help!
Semiregular variables

Regularity classes (Mira, Sra, Srb and Irregular) are rather loosely defined in GCVS

- **Mira**: $M_v > 2.5$ mag, $P > 100$ d
- **Sra**: Mixture of Miras and Srbs
- **Srb**: $T_\ast > 3200$ K, $P < 150$ d

Stellar parameters of SRVs compared to Mira variables:

- T_\ast, M_\ast are higher
- P, R_\ast, C/O, v_{term}, \dot{M} are lower

=> interpreted as stars on the early AGB
Results for W Hydrae (SRa)

Alumina grains form, silicate clusters form, but at too low gas density to efficiently condense.
Results: S-type star

Molecular abundances vs. Radius for a 20 km/s shock and parameters for W Aquilae

Comparison of modelled abundances with the most recent Herschel/HIFI and previous observations

Danilovich 2014
Alumina and forsterite grains form in quantity and large sizes, despite the comparable high C/O = 0.95. Observations predict a mass loss rate of $3 \cdot 10^{-6} \text{ M}_{\odot}/\text{yr}$ and a dust-to-gas mass ratio of $5 \cdot 10^{-3}$. This is consistent with our dust-to-gas mass ratio at 8 R_*:

$\Psi = 4 \cdot 10^{-3}$ for a 20 km/s shock and $\Psi = 6 \cdot 10^{-3}$ for a 32 km/s shock.
Miras in the SMC

Alumina dust:
\[\Psi = 1.3 \cdot 10^{-8} \]
\[A_{\text{grain}} = 13 \, \text{Å} \]

Forsterite dust:
\[\Psi = 3.1 \cdot 10^{-4} \]
\[A_{\text{grain}} = 75 \, \text{Å} \]

[Graphs showing abundance and grain radius distributions]
Miras in the LMC

Alumina dust:
Ψ = 3.2 \cdot 10^{-6}
A_{\text{grain}} = 115 \text{ Å}

Forsterite dust:
Ψ = 1.1 \cdot 10^{-3}
A_{\text{grain}} = 110 \text{ Å}

Z = 0.008
D = 50 \text{ kpc}
Conclusions

• Pulsation models of the inner wind of Mira stars well explain observed molecular abundances of H$_2$O, OH, SiO, SiS, CO, CO$_2$, HCN, CS, SO, PN and HCl.

• NH$_3$, SO$_2$ and PO cannot be reproduced by the models. Observations indicate that these species
 - are located outside the inner envelope or
 - synthesized by processes not considered here (photochemistry, grain surface reaction).

• Alumina grains (> 0.1 µm) form close to the star at r ≤ 1.5 R$_*$.

• Silicate (forsterite) grains form between 4 R$_*$ and 6 R$_*$ from a new nucleation route involving HSiO

→ Consistent with recent MIDI/VLT observations

Karovicova 2013
Conclusions

Semi-regular (SRV) model: Molecular abundances agree with observations (CO, SiO, HCN). Alumina dust forms, but silicates can hardly be synthesized, owing to low densities.

S-type star model: Models predict large amounts of alumina and silicate dust. Modelled abundances (in particular SiO and H$_2$O) agree with observations before the onset of forsterite formation.

Low metallicity model: Smaller amounts of clusters and dust are derived, owing to the lower availability of heavy elements.

For the first time, detailed non-equilibrium chemical models accounting for - gas phase,
- cluster nucleation, and
- dust condensation,
are set up for the inner winds of AGB stars (O-rich Miras, semi-regular, S-type, and Miras in the SMC/LMC) and explains the prevalent molecules and dust condensates.
Questions

Any questions?
Suggestions for improvement?
Looking for experts in Hydrodynamics!