Molecular layers in the dust formation zone of AGB stars

David Gobrecht

Collaborators: Sergio Cristallo, Oscar Straniero, Luciano Piersanti Isabelle Cherchneff, Arkaprabha Sarangi, Stefan Bromley, John Plane

Nice 4th of June 2015

Overview

- AGB stars: types & evolution
- The inner wind of AGB stars
- Stationary wind vs. Dynamic pulsations
- Chemical model for the gas phase, cluster formation routes and dust grains
- Results on molecules & dust clusters
- Dust condensation & grain size distributions
- Outlook & Conclusions

AGB stars

Late stage evolution of low- and intermediate stars ($M_*^{ZAMS} < 8 M_{\odot}$)

Cool photospheres (T = 2000 - 3000 K) and high luminosities (L \sim 10³ - 10⁴ L_o)

High mass loss rates $(10^{-7} - 10^{-4} M_{\odot}/yr)$ due to the presence of dust

Evidence for dust

Forsterite (Mg₂SiO₄) in the lab (69 μ m):

Bowey 2013

In addition: MgS at 30 μ m PolyAromatic Hydrocarbons (PAHs) at 3.3,6.2,7.7,8.8,12.7 and 16.4 μ m \rightarrow (hydrogenated) amorphous carbon

Chemical types of AGB stars

- M-type: oxygen-rich, C/O < 1
- S-type: C/O ~ 1
- C-type: carbon-rich, C/O > 1
 - ... at the photosphere

Low mass: 3^{rd} dredge up mixes carbon to the photosphere \rightarrow C/O increases

Intermediate mass: Hot bottom burning converts C in N and other CNO products

 \rightarrow C/O decreases

C/O ratio: molecules

Thermodynamic equilibrium (TE) predicts the presence of:

CO, C, HCN, CS, C_2H_2 , CH, CNin the C-rich caseTsuij 1973CO, H_2O , SiO, OH, TiOin the O-rich case

 \rightarrow E_{bind}(CO) = 11.2 eV \rightarrow locks up lesser abundant element

BUT observed are also:

C-bearing molecules in O-rich AGBs:

HCN, CS, OCS, CN, CO₂ Deguchi 1985, Lindqvist 1988, Omont 1993, Bujarrabal 1993, Justtanont 1998, Decin 2010

O-bearing species in carbon stars:

H₂O, OH, SiO *Melnick 2011, Hasegawa 2006, Ford 2004, Schoeier 2006*

TE cannot account for these observed molecules

=> Kinetic description is necessary for the chemistry

AGB star structure

Lattanzio 2004

Stellar wind driven by pulsations and dust grains

Large convective envelope

Energy generation proceeds in thin burning shells

Degenerate (nonburning) core consisting of carbon and oxygen

The inner wind of AGBs

Energy scale in the wind

Timescales for AGB stars

- Main sequence: $\sim 10^7 10^{10}$ years
- Time on the (TP) AGB: ~ 10^6 years
- Time between dredge-up (mixing) episodes: ~ 10⁴ years Maercker 2009

Timescale in the wind:

- Expansion timescale: $R_{env} / V_{exp} \sim$
- Time between pulsations: ~ 1 year
- Chemical reactions: 1/k ~ ms to hours
- Dust growth: coagulation & surface growth

Physics of the inner wind

Periodic shocks cross the stellar atmosphere

→ ambient gas is compressed, heated and accelerated

Nowotny 2010

- → formation of dense and warm gas layers gravitationally bound to the star
- → favourable conditions for molecule, cluster & dust grain formation *cherchneff* 1996/2006/11/12, *Willacy* & *Cherchneff* 1998, *Duari* 1999
- → Pulsations & dust are necessary for mass loss

Periodic pulsation model for a galactic Mira star: IK Tau

Temperature

Pre-shock profiles: number density Scale height

 $T(r) = T_* \left(\frac{r}{R_*}\right)^{-0.6} \qquad n(r) \propto n_* \exp\left(\frac{-r}{H}\right) \qquad H = \frac{k_B T}{\mu m_H g} = \frac{k_B T R^2}{\mu m_H GM}$

Willson&Bowen 1984, Cherchneff 1992

Post-shock profiles:

- Rankine-Hugoniot jump conditions
- Gas excursions on ballistic trajectories

Based on mass, momentum, and energy

conservation

$$\frac{d\rho}{dt} \equiv \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial z}\right)\rho = -\rho(\nabla \cdot v) ,$$

$$\frac{dv}{dt} + \frac{1}{\rho} \frac{\partial p}{\partial z} = -g , \quad \triangleright \qquad \frac{r_d}{C}$$

$$\frac{dp}{dt} + \gamma p(\boldsymbol{\nabla} \cdot \boldsymbol{v}) = 0 \; .$$

Parameters for IK Tau

	Parameter	Value
	T_*	2200 K
	M_*	$1 M_{\odot}$
	R_*	2.5×10^{13} cm
	Vs	$25 - 32 \text{ kms}^{-1}$
,	Р	470 days
	$n(1R_{*})$	$3.6 \times 10^{14} \text{ cm}^{-3}$
	rs	1 R _*
	C/O	0.75
	М	$(0.4 - 3) \times 10^{-5} \text{ M}_{\odot}/\text{yr}$
	Ψ	1.9×10^{-2}

Periodic pulsation model for Miras

Gobrecht 2015 submitted

Gas-phase chemistry

Molecular detections in inner oxygen-rich AGB winds:

H₂O, OH, SiO, SiS, NaCl, **CO, CO₂, HCN, CS**, SO, SO₂, NH₃

PN, PO *Milam 2007, Justtanont 1998, Decin 2010, Justtanont 2012, Menten 2010, De Beck 2013*

Chemical network contains termolecular & bimolecular (neutral-neutral, collisional fragmentation, radiative association) processes – no ions

Reaction type	Reaction	formulation	Gas conditions	17 elements		
Unimolecular Thermal decomposition	AB	\rightarrow A + B	High T	105 molecules 426 reactions		
Bimolecular						
Neutral-exchange	AB + C	\rightarrow A + CB	T dependent			
Collisional dissociation	AB + M	$\rightarrow A + B + M$	High T	GOAL: Reproduce		
Radiative association	A + B	$\rightarrow AB + \gamma$	T independent	these molecules in		
Termolecular the observed						
Termolecular formation	A + B + M	$\rightarrow AB + M$	(Very) high n	amounts		

Chemical network

Bimolecular reaction: $A + B \rightarrow C + D$ Change in number density of species C:

$$\frac{dn(C)}{dt} = k_{AB} n(A) n(B) \qquad k_{AB} = \alpha \left(\frac{T}{298 \text{ K}}\right)^{\beta} \exp\left(\frac{-E_a}{RT}\right)$$

Set of reactions :

7

Arrhenius reaction rate

$$\frac{dn_{i}}{dt} = \sum_{j,k} k_{jk} n_{j} n_{k} + \sum_{j,k} k_{jkM} n_{j} n_{k} n_{M} - n_{i} \sum_{l} k_{il} n_{l} - n_{i} \sum_{n} k_{n}$$

 \rightarrow set of stiff, coupled, non-linear ordinary differential equations (ODEs)

 \rightarrow ODEs subject to varying temperature and densities

Cluster nucleation routes

Chemical network involves formation pathways to dimers of alumina (Al_2O_3) & forsterite (Mg_2SiO_4) , enstatite $(MgSiO_3)$ of metal oxides (SiO, MgO, FeO, TiO), and pure metal clusters (Fe, AI, Si)

- Structure determination by a semi-classical Monte-Carlobased candidate search & subsequent quantum Density Functional Theory (DFT) calculations
- DFT analysis yields thermochemical properties, which indicate trends for reaction mechanisms and kinetics

Cluster nucleation routes

Silicates: forsterite dimers Mg₄Si₂O₈

Goumans & Bromley 2012 Enstatite formation pathway Zachariah & Tsang 1995 Formation of hydrogenated silicon oxides in silane-rich flame

- SiO dimerisation to slow to start silicate nucleation
- Nucleation proceeds via HSiO, H₂Si₂O₂ & H₂Si₂O₃ formation
- Growth via successive oxidation & Mg inclusion steps
- Efficient mechanism to synthesise silicate dimers (enstatite and forsterite) between ~ 4 R_{*} and 6 R_{*}

Dust grain condensation

Formalism based on Brownian thermal motion, which accounts for the scattering, fragmentation, and coagulation of the grains *Plane 2013, Sarangi & Cherchneff 2014*

 \rightarrow Grains size distributions are derived for silicates of forsterite and enstatite stoichiometry, and alumina.

 \rightarrow Grains are assumed to be spherical, volume conserving and stable to (stellar) radiation

Timescales for dust condensation ?

Consider from hydro models Bowen 1988, Nowotny 2010

Dust grains keep growing over several pulsation periods, whereas gas phase molecules reform within one period.

•Drift velocities at r > 3 R_{*} for silicates – 1.5 kms⁻¹ correspond to two pulsations to cover 0.5 R_{*}

Results: Molecules in IK Tau

1 R.

CO, H_2O , SiO, SiS, HCI, AIOH & PN form close to the star as soon as gas relaxes and cools down.

Gobrecht 2015 submitted

3 R.

Some molecules are more shock chemistrydependent. C-bearing species form from CO breaking by shocks SO, HCN, CS, CO₂

Results: Molecules in IK Tau

 Modelled abundances for 12 molecules at 6 R_{*} agree well with observations

 Validate shock chemistry scenario → strong impact of shocks on the gas and solid phases of the inner wind

Discrepancy for SO₂

Our parent species include

CO, H₂O, SiO, SiS, PN, SO, HCN,

CS, CO₂, AIOH, TiO, HCI & NaCI

Gobrecht 2015 submitted

Results: Dust clusters in IK Tau

Alumina dimers AI_4O_6 :

Other formation channels, which deplete AIOH ?

Results: Dust clusters in IK Tau

Silicates: forsterite dimers Mg₄Si₂O₈

Start forming at 3.5 R_{*} from HSiO dimerisation

Grain size distributions: alumina

Large grains > 0.02 µm are already formed at 1, because gas densities are high in the postshock gas

Grain size distribution: forsterite

- Forsterite grains grow to larger sizes with increasing number of pulsations and radius
- Dust/gas mass ratio after 8 R_{*} agrees with observations
- Grain size peaks at 0.02 μm, which is a bit low (from obs. a = 0.1 μm)

Enhanced density: forsterite

A factor x10 in gas density results in grain size distributions peaking at ~ 0.1 μ m \rightarrow inhomogeneous wind will help!

Semiregular variables

Regularity classes (Mira, Sra, Srb and Irregular) are rather loosely defined in GCVS

Mira: $M_v > 2.5$ mag, P > 100 d Sra: Mixture of Miras and Srbs Srb: T_{*} > 3200 K, P < 150 d

Stellar parameters of SRVs compared to Mira variables:

T_{*}, M_{*} are higher

P, R*, C/O, v_{term} , \dot{M} are lower

=> interpreted as stars on the early AGB

Results for W Hydrae (SRa)

Alumina grains form, Silicate clusters form, but at too low gas density to efficiently condense

Results: S-type star

Molecular abundances vs. Radius for a 20 km/s shock and parameters for W Aquilae Danilovich 2014

Comparison of modelled abundances with the most recent Herrschel/HIFI and previous observations

Results: S-type star

Alumina and forsterite grains form in quantity and large sizes, despite the comparable high C/O = 0.95. Observations predict a mass loss rate of $3 \cdot 10^{-6}$ M_{sun}/yr and a dust-to-gas mass ratio of $5 \cdot 10^{-3}$. This is consistent with our dust-to-gas mass ratio at 8 R_{*} : $\Psi = 4 \cdot 10^{-3}$ for a 20 km/s shock and $\Psi = 6 \cdot 10^{-3}$ for a 32

km/s shock

Miras in the SMC

Miras in the LMC

Conclusions

- Pulsation models of the inner wind of Mira stars well explain observed molecular abundances of H₂O, OH, SiO, SiS, CO, CO₂, HCN, CS, SO, PN and HCI
- NH₃, SO₂ and PO cannot not reproduced by the models.
 Observations indicate that these species
 - are located outside the inner envelope or
 - synthesized by processes not considered here (photochemistry, grain surface reaction)
- Alumina grains (> 0.1 μ m) form close to the star at r \leq 1.5 R_{*}
- Silicate (forsterite) grains form between 4 R_{*} and 6 R_{*} from a new nucleation route involving HSiO

→ Consistent with recent MIDI/VLT observations *Karovicova 2013*

Conclusions

Semi-regular (SRV) model: Molecular abundances agree with observations (CO, SiO, HCN). Alumina dust forms, but silicates can hardly be synthesized, owing to low densities.

S-type star model: Models predict large amounts of alumina and silicate dust. Modelled abundances (in particular SiO and H_2O) agree with obervations before the onset of forsterite formation.

Low metallicity model: Smaller amounts of clusters and dust are derived, owing to the lower availability of heavy elements.

For the first time, detailled non-equilibrium chemical models accounting for - gas phase,

- cluster nucleation, and
- dust condensation,

are set up for the inner winds of AGB stars (O-rich Miras, semi-regular, S-type, and Miras in the SMC/LMC)

and explains the prevalent molecules and dust condensates.

Any questions? Suggestions for improvement ? Looking for experts in Hydrodynamics!