A Pathway to Earth-like Worlds:

Overcoming Astrophysical Noise due to Convection

Dr. Heather Cegla

Dr. Chris Watson, Dr. Sergiy Shelyag, Prof. Mihalis Mathioudakis

A Pathway to Earth-like Worlds:

Vsloatly in km/a

Star spots, PlagesStellar Oscillations

- Star spots, Plages
 Stellar Oscillations
- Granulation

- Star spots, Plages
 Stellar Oscillations
- Granulation

Mon. Not. R. Astron. Soc. 421, L54–L58 (2012)

doi:10.1111/j.1745-3933.2011.01205.x

Stellar jitter from variable gravitational redshift: implications for radial velocity confirmation of habitable exoplanets

H. M. Cegla,^{1,2} C. A. Watson,^{1*} T. R. Marsh,³ S. Shelyag,¹ V. Moulds,¹ S. Littlefair,⁴ M. Mathioudakis,¹ D. Pollacco¹ and X. Bonfils⁵

- Star spots, Plages
- Stellar Oscillations
- Granulation
- Variable Gravitational
 - Redshift

Current Removal Method

Our Removal Method

Our Removal Method

Parameterisation

- Separate based on:
 - Continuum Intensity
 - Magnetic Field
- Four Components
 - Granules
 - Non-Magnetic Intergranular Lanes
 - Magnetic Intergranular Lanes

STELLAR SURFACE MAGNETO-CONVECTION AS A SOURCE OF ASTROPHYSICAL NOISE. I. MULTI-COMPONENT PARAMETERIZATION OF ABSORPTION LINE PROFILES

H. M. CEGLA^{1,2}, S. SHELYAG¹, C. A. WATSON¹, AND M. MATHIOUDAKIS¹

¹ Astrophysics Research Centre, School of Mathematics & Physics, Queen's University, University Road, Belfast BT7 1NN, UK; hcegla01@qub.ac.uk ² Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA

Received 2012 October 16; accepted 2012 December 1; published 2013 January 14

Generating New Profiles

Queen's University Belfast

Analysing the Profiles

Initial Results

-			
Diagnostic	$V_{\sigma} (\mathrm{cm} \mathrm{s}^{-1})$	Fractional Reduction (%)	Pearson's R
	20.4	_	_
BIS	37.8	-85	-0.48
С	13.3	35	-0.84
V_b	15.5	24	0.80
A_b	16.2	21	-0.78
bi-Gauss	46.1	-126	-0.40
V _{asy}	9.0	56	0.91
FWHM	77.0	-277	0.26
Line Depth	13.0	36	-0.84
EW	17.4	15	-0.76
Brightness	10.5	49	-0.89 🗊
			5

Next Steps...

Continue to make observations more realistic:

- Instrumental profile, photon noise, finite exposures, additional noise sources, various magnetic fields, injecting planets
- Test observationally
 - Solar data, highest RV precision targets
- Expand to a suite of stellar lines with varying:
 - Formation heights, absorption strengths,

excitation and ionisation potentials

Expand to other spectral types

