

Performance of hybrid externally occulted Lyot solar coronagraph

Raphael Rougeot – ESA, PROBA-3

4 October 2016, Nice

Issue/Revision: 1.1 Reference: N/A Status: N/A ESA UNCLASSIFIED - For Official Use

European Space Agency

• System Engineer

at the European Space Agency within Proba-3 project team.

• Educational Background:

- Ecole Polytechnique, Palaiseau, France.
- ISAE Supaero, Toulouse, France .
- Université Paul Sabatier, Toulouse, France.
- Article: Rougeot R., Flamary R., Galano D., Aime, C., A&A (2016) "Performance of hybrid externally occulted Lyot solar coronagraph"

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 2

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

Outline

1. Proba-3 mission

- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

- In-orbit demonstration of precise Formation Flying.
- Two spacecraft flying **150m apart**, control with at a millimetre accuracy.
 - The Occulter Spacecraft will carry a 1.5m diameter occulting disc.
 - The Coronagraph Spacecraft will fly the solar coronagraph ASPIICS.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 5

- In-orbit demonstration of precise Formation Flying.
- Two spacecraft flying **150m apart**, control with at a millimetre accuracy.
 - The Occulter Spacecraft will carry a 1.5m diameter occulting disc.
 - The Coronagraph Spacecraft will fly the solar coronagraph ASPIICS.
- Launch scheduled in December 2019.

Proba-3

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

The corona of the Sun

- Fully ionized, magnetized plasma in a dynamic state.
- From ~5000kms to 20-30 solar radii.
- Temperature of 10⁶K ≫ 6000K at the Sun's surface. Aschwanden, 2005.
- Three "layers" of corona:
 - K-corona (continuum, Thomson scattering)
 - F-corona (Fraunhoffer rays)
 - E-corona (emission lines)
- Large scale structures (streamers, loop arcades, holes)
 Fine scale structures (plumes, rays, loops)
 ~ arcsec (November & Koutchmy 1996, Zhukov et al. 2000)

Proba-2 (SWAP) on 29/07/2014

Questions to be addressed

- Physical processes that govern the quiescent solar corona.
- Nature at different scales.
- Heating processes, role of waves (Alfven, MHD modes).
- Solar wind acceleration.
- Coronal Mass Ejections (CME).
- Formation, structures.
- Acceleration, interaction, shock.

Habbal et al., 2010. Emissions from FeX/FeXI and FeXIII/FeXIV on white light image (01/08/2008)

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

Practically, it is impossible to observe directly the corona of the Sun in white light without perfect eclipse conditions.

Principle of coronagraphy

• First on-ground observations during solar eclipses by the Moon.

• *Constraints:* rare events, precise location on Earth, short observation time, atmosphere turbulence and scattering.

Lyot coronagraph

• First solar coronagraph was designed in 1930's by French astronomer Bernard Lyot (Lyot, 1939, Dollfus, 1983).

Original design of Lyot's coronagraph in his article of 1931

- *Main principle:* create **artificial eclipse conditions** to reveal the corona of the Sun.
- Advantages: daily observations, long observation time...
- Constraints: atmosphere turbulence, instrumental scatter...

Lyot coronagraph

- The objective focuses the sunlight on the focal plane where an occulting disc or a rejecting mirror is set: the Lyot Mask.
- The light from the solar corona is not blocked and can be observed.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 15

ESA UNCLASSIFIED - For Official Use

Lyot coronagraph

Because of the wave nature of light, **diffraction of sunlight** contaminates the observations, and has to be removed as well.

A field stop blocks this diffracted light on the pupil plane: **the Lyot stop**.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 16

- The classical Lyot coronagraph is said internally occulted.
- External occultation technique (Evans, 1948).

The solar coronagraph is then said externally occulted. The external occulter diffracts and scatters sunlight as well.

- The classical Lyot coronagraph is said internally occulted.
- External occultation technique (Evans, 1948).
 The solar coronagraph is then said externally occulted.
 The external occulter diffracts and scatters sunlight as well.
- Occulting discs with **complex shapes**, to lower the scattered light:
 - toothed discs (Purcell & Koomen, 1962, Fort et al., 1977).
 - multiple discs (Newkirk & Bohlin, 1963, Lensky, 1981).
 - torus, barrel, cone (Exp. studies: Bout et al., 2000, Landini et al., 2011).

• **Spaceborne coronagraphy**: review described in Koutchmy, 1988. *Advantages:* get rid off atmosphere turbulences/scattering.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 19

- Spaceborne coronagraphy: review described in Koutchmy, 1988. *Advantages:* get rid off atmosphere turbulences/scattering.
- LASCO solar coronagraphs of the SOHO mission (Brueckner et al., 1995) Three solar coronagraphs (C1, C2 and C3) of different concepts.

- Spaceborne coronagraphy: review described in Koutchmy, 1988. *Advantages:* get rid off atmosphere turbulences/scattering.
- LASCO solar coronagraphs of the SOHO mission (Brueckner et al., 1995) Three solar coronagraphs (C1, C2 and C3) of different concepts.
- LASCO C2
 - External occulter (multiple sharp thread discs on a cone)
 - Classical Lyot coronagraph with a Lyot mask/Lyot stop
 - Hybrid externally occulted Lyot solar coronagraph

LASCO C2 & C3

Hybrid externally occulted Lyot solar coronagraph

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 22

LASCO C2 & C3

The resulting CME from the filament eruption observed by the SOHO LASCO C2 and C3 coronagraphs. The solar disk is an SDO 304/193 Angstrom image.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 23

ASPIICS coronagraph

- ASPIICS is based on the same concept as LASCO C2
 Hybrid externally occulted Lyot solar coronagraph
 Lamy, 2010, Renotte, 2015, and Galy, 21015
- Advantages: Formation Flying provides a long-baseline (150m). The instrument is split into two spacecraft.
 For the same occultation, the resolution/signal of the corona is better.

ASPIICS coronagraph

- ASPIICS is based on the same concept as LASCO C2 • Hybrid externally occulted Lyot solar coronagraph
- Advantages: Formation Flying provides a long-baseline (150m). • The instrument is split into two spacecraft. For the same occultation, the resolution of the corona is better.

ASPIICS coronagraph

- ASPIICS is based on the same concept as LASCO C2 Hybrid externally occulted Lyot solar coronagraph
- Advantages: Formation Flying provides a long-baseline (150m). The instrument is split into two spacecraft. For the same occultation, the resolution of the corona is better.

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

 Need of analyzing the end-to-end performance of solar coronagraphs through dedicated analytical study.

- Need of analyzing the end-to-end performance of solar coronagraphs through dedicated analytical study.
- Few theoretical/analytic studies (Fort, 1977, Lensky, 1981, Aime et al.) Experimental/laboratory studies (Bout et al., 2000, Venet et al., 2010, Landini et al., 2011)

- Need of analyzing the end-to-end performance of solar coronagraphs through dedicated analytical study.
- Few theoretical/analytic studies (Fort, 1977, Lensky, 1981, Aime et al.) Experimental/laboratory studies (Bout et al., 2000, Venet et al., 2010, Landini et al., 2011)
- The performance of hybrid externally occulted Lyot coronagraph has never been analytically/extensively studied.
 This is what we did!

Rougeot R., Flamary R., Galano D., Aime C., A&A (2016) "Performance of hybrid externally occulted Lyot solar coronagraph"

Numerical study of diffraction

• *Objectives:* analytical (theoretical) performance of solar coronagraphs, especially the hybrid externally occulted Lyot coronagraph.

Numerical study of diffraction

- *Objectives:* analytical (theoretical) performance of solar coronagraphs, especially the hybrid externally occulted Lyot coronagraph.
- *Method:* analytical.
 - Sun defined as a collection of point sources.
 - Diffraction from the EO (Aime, 2013).
 - Coherent propagation process inside the coronagraph (Aime, 2002).
 - Incoherent summation of elementary intensities.

Numerical study of diffraction

- *Objectives:* analytical (theoretical) performance of solar coronagraphs, especially the hybrid externally occulted Lyot coronagraph.
- *Method:* analytical.
 - Sun defined as a collection of point sources.
 - Diffraction from the EO (Aime, 2013).
 - Coherent propagation process inside the coronagraph (Aime, 2002).
 - Incoherent 2D-summation of elementary intensities from every solar point sources.
- *Results:* **theoretical performance** in stray light rejection.
 - comparison of different coronagraphic systems.
 - study on sizing the dimension of the Lyot mask and stop.

Fourier Optics

- Frame of work: Fourier Optics (Born & Wolf, 2006, Goodman, 2005) Fresnel free space wave propagation of light.
- Assumptions:
 - Ideal perfect optics.
 - All planes of interest are parallel and aligned \rightarrow axis-symmetry.
 - Small angles.

Definition of the system

- Different key planes are used to describe the classical Lyot coronagraph:
 - **Plane A**: the pupil plane. The entrance aperture + L1.
 - **Plane B**: the focal plane. Lyot mask + L2.
 - **Plane C**: the pupil plane (image). Lyot stop + L3.
 - **Plane D**: final focal plane. Detector.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 35

ESA UNCLASSIFIED - For Official Use

Definition of the system

- Different key planes are used to describe the classical Lyot coronagraph:
 - **Plane A**: the pupil plane. The entrance aperture + L1.
 - **Plane B**: the focal plane. Lyot mask + L2.
 - **Plane C**: the pupil plane (image). Lyot stop + L3.
 - **Plane D**: final focal plane. Detector.

- Different key planes are used to describe the classical Lyot coronagraph:
 - **Plane A**: the pupil plane. The entrance aperture + L1.
 - **Plane B**: the focal plane. Lyot mask + L2.
 - **Plane C**: the pupil plane (image). Lyot stop + L3.
 - **Plane D**: final focal plane. Detector.

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide S_L the classical Lyot coronagraph (internally occulted) ESA UNCLASSIFIED - For Official Use

- Two other planes have been added:
 - **Plane O**: the external occulter plane.
 - **Plane O'**: Image conjugate plane of plane O. Internal occulter + L2

- Two other planes have been added:
 - **Plane O**: the external occulter plane.
 - **Plane O'**: Image conjugate plane of plane O. Internal occulter + L2

S_E the externally occulted coronagraph

- Two other planes have been added:
 - **Plane O**: the external occulter plane.
 - **Plane O'**: Image conjugate plane of plane O. Internal occulter + L2

 S_{EL} the hybrid externally occulted Lyot coronagraph

Parameters of the study

• The parameters for our numerical study are matched to ASPIICS configuration.

Parameters	Value
Wavelength	$\lambda = 550 nm$
Angular radius of the Sun	$R_{\odot} = 0.00465421 rad$
Distance to the Sun	∞ (1AU)
Radius of the External Occulter	R = 710mm
Distance plane O – plane A	$z_0 = 144.348m$
Radius of the entrance pupil	$R_p = 25mm$
Focal length (plane A – plane B)	f = 330.385m

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

- What do we want?
 - Quantify the level and the distribution of residual sunlight (diffraction).
 - For the three coronagraphic systems, on the final focal plane.
 - Address the question of sizing the Lyot mask and stop.
- What did we do?
 - Computation of the coherent propagation for every solar point sources.
 - Computation of the incoherent 2D-summation of elementary intensities.
 - For the three coronagraphic systems, on every plane.
- We will now go through the results plane after plane
 A → B → O' → C → D

Diffraction from the external occulter

- Approach from Aime, 2013, A&A 558, 138
 "Theoretical performance of solar coronagraphs using sharp-edged or apodized circular external occulter".
- Fresnel diffraction of planar wave front from a point source at infinity by a perfect sharp-edged occulting disc.

 ψ_0

Plane A: Diffraction from the external occulter

Bright spot of Arago from the on-axis point source (Plane A)

Credit: Minerva.union.edu

Bright spot of Arago from the on-axis point source (Plane A)

Computation using Nintegrate in Mathematica (Wolfram, 2012)

ean Space Agency

Plane A: penumbra profile

Including the **external occulter** on plane O

Plane B: focal plane

Plane B: focal plane

ESA UNCLASSIFIED - For Official Use

European Space Agency

Plane O': image plane of the EO

Plane O': image plane of the EO

Observed intensities $I_{O^\prime}(r)$ on plane O^\prime

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 51

ESA UNCLASSIFIED - For Official Use

European Space Agency

Plane C: image plane of the pupil

x (mm)

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 52

ESA UNCLASSIFIED - For Official Use

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 53

ESA UNCLASSIFIED - For Official Use

European Space Agency

Plane D: final focal plane

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 54

ESA UNCLASSIFIED - For Official Use

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

Sizing the internal occulter

Final observed intensities $I_D(r)$ of the hybrid coronagraphic system S_{EL}

Sizing the internal occulter

Final observed intensities $I_D(r)$ of the hybrid coronagraphic system S_{EL}

Dimension of the IO and the Lyot stop

Dimension of the IO and the Lyot stop

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

- *Objectives:* to develop an analytical and numerical study of the theoretical performance of solar coronagraphs such as ASPIICS.
- We did: analytically
 - Novel computation of theoretical end-to-end performance.
 - Computation of the stray light rejection.
 - Comparison of different coronagraphic systems.
 - Study on sizing the dimension of the Lyot mask and stop.
- Conclusion:
 - We proved the performance of the hybrid externally occulted Lyot coronagraph.
 - Support to the solar astronomer and ASPIICS design.

Future activities

- Misalignment (in case of FF), tilt...
- Other types/shapes of occulters.
- Apodization of the entrance pupil.
- Non-perfect optics, deviation from the ideal model.
- Experimental assessements, confrontation.

Questions?

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 63

ESA UNCLASSIFIED - For Official Use

www.esa.int

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion

8. Appendix: wave propagation

9. Appendix: integrated residual light

- Fresnel free space wave propagation of light
- Propagation over a distance z

Convolution by free space propagator $\frac{1}{i\lambda z} \exp\left(+i\pi \frac{x^2+y^2}{\lambda z}\right)$

$$\psi_{z}(x,y) = \frac{e^{i\pi \frac{x^{2}+y^{2}}{\lambda z}}}{i\lambda z} \times FT \left[\psi_{0}(x,y) \times \frac{1}{i\lambda z} \exp\left(+i\pi \frac{x^{2}+y^{2}}{\lambda z}\right)\right]$$

$$\psi_{0}(x,y)$$

$$()))$$

$$\psi_{z}(x,y)$$

$$()))$$

- Fresnel free space wave propagation of light
- Propagation over a distance z

Convolution by free space propagator $\frac{1}{i\lambda z} \exp\left(+i\pi \frac{x^2+y^2}{\lambda z}\right)$

$$\psi_{z}(x,y) = \frac{e^{i\pi \frac{x^{2}+y^{2}}{\lambda z}}}{i\lambda z} \times FT\left[\psi_{0}(x,y) \times \frac{1}{i\lambda z} \exp\left(+i\pi \frac{x^{2}+y^{2}}{\lambda z}\right)\right]$$

- Converging (perfect) lens of focal *f*: $\exp\left(-i\pi \frac{r^2}{\lambda f}\right)$
- Propagation to the **focal plane**: z = f

- Fresnel free space wave propagation of light
- Propagation over a distance z

Convolution by free space propagator $\frac{1}{i\lambda z} \exp\left(+i\pi \frac{x^2+y^2}{\lambda z}\right)$

$$\psi_z(x,y) = \frac{e^{i\pi \frac{x^2 + y^2}{\lambda z}}}{i\lambda z} \times FT\left[\psi_0(x,y) \times \frac{1}{i\lambda z} \exp\left(+i\pi \frac{x^2 + y^2}{\lambda z}\right)\right]$$

- Converging (perfect) lens of focal $f: \exp\left(-i\pi \frac{r^2}{\lambda f}\right)$
- Propagation to the focal plane: z = f
 A simple Fourier transformation of the incoming wave front!

$$\psi_{z=f}(x,y) = \frac{e^{i\pi \frac{x^2 + y^2}{\lambda f}}}{i\lambda f} \times FT[\psi_0(x,y)]$$

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 67

ESA UNCLASSIFIED - For Official Use

European Space Agency

- Ψ_A : Planar incoming wave front
 - $\Psi_B = FT[\Psi_A \times P]$ $\Psi_C = FT[\Psi_B \times M]$ Aime, 2002 $\Psi_D = FT[\Psi_C \times L]$

• Ψ_A : Fresnel diffraction induced by the EO (Arago's spot) $\Psi_B = FT[\Psi_A \times P]$

 $\Psi_{O'}$ = Propagation to O'?

We can do better!

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 71

ESA UNCLASSIFIED - For Official Use

- Ψ_A : Fresnel diffraction induced by the EO (Arago's spot) $\Psi_B = FT[\Psi_A \times P]$ We may skip plane B.
- "Virtual" converging lens of focal $-z_0$ Plane O' becomes the new focal plane of the doublet $\downarrow + \downarrow$. $\Psi_{0'} = FT \left[\Psi_A \times P \times exp \left(-\frac{i\pi r^2}{\lambda z_0} \right) \right]$

ESA UNCLASSIFIED - For Official Use
Wave propagation

• Ψ_A : Fresnel diffraction induced by the EO (Arago's spot)

$$\Psi_{O'} = FT \left[\Psi_A \times P \times \exp\left(-\frac{i\pi r^2}{\lambda z_0}\right) \right]$$
$$\Psi_C = FT \left[\Psi_{O'} \times M \right] \times \exp\left(+\frac{i\pi r^2}{\lambda z_0}\right)$$
$$\Psi_D = FT \left[\Psi_C \times L \right]$$

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 73

ESA UNCLASSIFIED - For Official Use

Observed intensities

Sampling of the solar disc by point sources (α, β)
Limb darkening function B @550nm (Van Hamme, 1993)

Shannon's criteria $\left(\frac{\lambda}{4R_p} = 1.13 arcsec\right)$

• On every plane:

Incoherent integration, 2D-sum over the solar disc (Fredholm)

• Axis-symmetry: observed intensities are radial functions.

$$I_{i}(r) = \int_{0}^{2\pi} \left[\int_{0}^{R_{\odot}} B(\rho) \times |\Psi_{i}(\alpha, \beta, r, \theta)|^{2} \rho d\rho \right] d\theta$$

i $\in \{A, B, 0', C, D\}$
Circular average of the 2D-image
Weighted summation along one solar radius

ESA UNCLASSIFIED - For Official Use

(

Outline

- 1. Proba-3 mission
- 2. The corona of the Sun
- 3. Solar coronagraphy
- 4. Numerical study of performance
- 5. Observed intensities
- 6. Sizing the Lyot mask and stop
- 7. Conclusion
- 8. Appendix: wave propagation
- 9. Appendix: integrated residual light

Integrated residual light

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 76

Classical Lyot coronagraph: Lyot mask in plane B

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 77

Integrated residual light

Hybrid externally occulted Lyot coronagraph: Internal pocuciter in plane B (wrong system)

Integrated residual light

This proves why the internal occulter is set in plane O' instead of plane B!

Raphael Rougeot | N/A | ESTEC | 19/09/2016 | Slide 79