Are terrestrial exoplanets really tidally synchronized?

...and why does it matter?

Jérémy Leconte

F. Forget, K. Menou, N. Murray, H. Wu

When will oceans boil?

The runaway greenhouse instability

Kasting (Icarus, 1988)

Unidimensional results

Development of a «generic» global climate model

Development of a «generic» global climate model

Unidimensional results

1D vs 3D: systematic biases

Heating the Earth!

Leconte et al. (Nature; 2013)

Unsaturated subtropical regions: radiative fins

bert (JAS; 1995), Leconte et al. (Nature; 2013)

The impact of the Hadley cell

Large scale cloud pattern on tidally locked planets

Venus is not!

Gravitational Tides

Gravitational Tides Negative torque => Spins down and synchronizes

Gold and Soter (ApJ, 1969), Ingersoll & Dobrovolskis (Nature, 1978), Correia & Laskar (Nature, 2001; JGR, 2003; Icarus, 2003)

Gold and Soter (ApJ, 1969), Ingersoll & Dobrovolskis (Nature, 1978), Correia & Laskar (Nature, 2001; JGR, 2003; Icarus, 2003)

dark = Pressure minima / bright = Pressure maxima

Can it work for exoplanets?

in principle yes (Correia et al., A&A, 2008), but...

Venus

CO₂, 92bars, 700K

Terre

N₂, 1bar, 300K

Tides 50 times weaker

(For the same forcing frequency)

★ Goal: quantify the torque

- ➡ need mass redistribution
 - ightarrow need surface pressure => $m_{
 m atm} = p_{
 m s}/g$

★ Approach:

- ➡ Define an atmosphere (p_s, Flux, n, …)
- Simulate atmospheric circulation for various rotation rates (synodic period)

Simulations of the surface pressure field: Numerical model

★ Goal: quantify the torque

- ➡ need mass redistribution
 - ightarrow need surface pressure => $m_{
 m atm} = p_{
 m s}/g$

★ Approach:

- ➡ Define an atmosphere (p_s, Flux, n, …)
- Simulate atmospheric circulation for various rotation rates (synodic period)
- Quantify the torque

$$T_{\rm a} = -\frac{GM_{\star}R_{\rm p}}{g} \sum_{l=2}^{\infty} \frac{4\pi}{2l+1} \left(\frac{R_{\rm p}}{r}\right)^{l+1} \sum_{m=-l}^{l} i \, m \, p_l^m \, Y_l^m(\theta_{\star} = \frac{\pi}{2}, \phi_{\star}),$$

 $T_{\rm a} = K_{\rm a} \,\mathbb{I}\mathrm{m}(p_2^2) \qquad p_l^m \equiv \int Y_l^{m*} \, p_{\rm s} \,\mathrm{d}\Omega$

A simple analytical model: periodically heated slab

A simple analytical model: periodically heated slab

A simple analytical model: periodically heated slab

Model validation

Leconte et al. (2015, Science)

Equilibrium spin states

Critical asynchronous distance

Leconte et al. (2015, Science)