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MOTIVATION
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Enlightening demo…



AT THE BEGINNING WAS… 

SPARSITY
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Through a wavelet transform, a signal is 
analysed by its convolution with a 
wavelet filter at various scales:             
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* Wavelet or scale-space techniques provide a multi-scale representation of natural 
signals and images, generically characterized by a sparse structure!

Picture of Einstein

Sparse signal model
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Signals are analysed by their 
convolution with a wavelet filter at 
various scales:             

This multi-scale decomposition 
provides a sparse representation, with 
numerous applications: 
- denoising 
- deconvolution 
- compression 
- etc.
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* Wavelet or scale-space techniques provide a multi-scale representation of natural 
signals and images, generically characterized by a sparse structure!

Sparse multiscale representation
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Sparse signal model



* Signals are usually sampled at Nyquist rate to avoid aliasing and compressed 
adaptively after acquisition… typically leveraging sparsity!

Standard compression
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Image Courtesy Han et al., 2013, 
Compressive Sensing for Wireless Networks

Nyquist rate !



Acquisition, storage, transfer of full data 
sets can be costly or unaffordable!
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* MRI finds its superiority in that it is a non-invasive non-ionizing biomedical imaging 
modality offering multiple contrast mechanisms. It probes anatomy by Fourier sampling.

❖ Each measurement of an MRI sequence is a Fourier 
coefficient of the image of interest: 

❖ Full acquisition is prohibitively slow. Acceleration 
by incomplete sampling is a deep challenge in the field:

MRI Fourier sampling
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2D Structural MRI Fourier sampling6D Diffusion MRI



Cygnus A Fourier sampling

❖ Each Telescope pair probes the correlation of incoming 
electric fields from the source, called visibility: 

… leading to incomplete Fourier sampling 
(monochromatic imaging, small FOV, incoherent source):

* Aperture synthesis in radio interferometry images the sky at extreme resolutions and 
sensitivities…through Fourier sampling.
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Very Large Array, New Mexico

Interferometric Fourier sampling
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Could we simply recover signals from sub-
Nyquist sampling? 

i.e. can we sample compressively?
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Image Courtesy Han et al., 2013, 
Compressive Sensing for Wireless Networks

* Compressive sensing would merge acquisition and compression…the compression 
being performed in sampling, it would have to be non-adaptive!

?Compressive sensing?
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COMPRESSIVE SENSING THEORY
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Sparse signal model !
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Linear sensing model
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❖ l0-norm minimisation promotes sparsity, but is non convex and combinatorial:  

Two approaches have been pursued: greedy approaches such as Matching Pursuit (MP), 
or convex relaxations… 

❖ The theory of compressive sensing demonstrates that the convex l1-norm 
minimisation problem will recover sparse signals, from suitable (???) sub-Nyquist data: 

❖ Such formulation opens the door to the realm of convex optimisation, that offer an 
extremely versatile framework to solve many evolutions of this minimisation problem!

* Regularisation is needed to solve the ill-posed inverse problem. Leveraging 
sparsity…

l1-norm minimisation problem
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* Geometrical understanding of the l1-norm relaxation for the sparsity prior… 

l1-norm minimisation problem
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l2-norml1-norm

Image Courtesy Davenport et al. Introduction to Compressed Sensing

Linear data constraint Linear data constraint

l1 ball l2 ball



* Theorem for l1-norm recovery.            should be such that the distance between 2 
sparse signals should be preserved in data space (Johnson-Lindenstrauss embedding)!!!

↵⇤

❖ Definition:  
            satisfies the Restricted Isometry Property (RIP) of order K iff there exists some 
constant            such that                                                                 for all K-
sparse vectors       . 

❖ Theorem: 
If the RIP is satisfied with                                      , then for all signals, 

the BP minimization problem 

provides accurate and stable reconstruction     :                                                , 

for   such that              ,       the best K-sparse approximation of the signal in the l1 
sense, and c and d  are constants depending only on      .�2K
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Restricted Isometry Property
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LATER ALSO CAME… 

RANDOMNESS AND INCOHERENCE
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Random sensing matrices
* Gaussian matrices satisfy the RIP for a number of measurements scaling with the 
signal sparsity rather than its dimension.

❖ A Random Gaussian Matrix                can be constructed with entries sampled from 
i.i.d. Gaussian distributions                . 

❖ Theorem: 

For a Gaussian measurement matrix,              satisfies the RIP with overwhelming 
probability for a nearly optimal number of measurements 

for some constant C. The measurement scheme is universal in the sense that the result 
holds for all sparsity bases.

N (0,M�1)
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Random sensing matrices
* Gaussian matrices satisfy the RIP for a number of measurements scaling with the 
signal sparsity rather than its dimension.
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�
M ' K ⌧ N

M ' K

N

❖However, purely random matrices are often unrealistic due to constraints of the 
physics of acquisition. It is also inefficient algorithmically due to the absence fast 
matrix multiplication (also leading to storage issues).



* Identical results hold for Bernoulli matrices…solving the inefficiency problem due to 
the sparse binary nature of the measurement matrix.

❖ The Rice single pixel camera (image from http://dsp.rice.edu/cscamera) is based on 
such a sensing matrix. The typical advantage over CCD etc. is that you can image at 
any wavelength…   
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Random sensing matrices

Digital Micromirror Device (DMD)

http://dsp.rice.edu/cscamera


* Structured random matrices typically built by random sampling in an o.n. basis, 
incoherent with the sparsity basis, satisfy the RIP for low number of measurements.

Structured random matrices

❖ A structured random matrix can be built as                          , where                is 
an o.n. basis and                 identifies a binary mask operating the random selection of 
M vectors in    . (Identical results also hold for general bounded o.n. systems). 

❖ Theorem: 
For such a measurement scheme,             satisfies the RIP with overwhelming 
probability for a measurement number 

for some constant C, and where    stands for the coherence between the measurement 
and sparsity bases:  

⌦ 2 CN⇥N� ⌘ M⌦† 2 CM⇥N

M 2 CM⇥N
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* Structured random matrices typically built by random sampling in an o.n. basis, 
incoherent with the sparsity basis, satisfy the RIP for low number of measurements.
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M ' µ2K

�
Incoherence between 
 sparsity and sensing

Structured random matrices

❖ The measurement scheme is realistic …see all Fourier imaging applications 
including radio-interferometric imaging, and magnetic resonance imaging! 

❖ This scheme is also efficient as fast matrix multiplications are often available. It is 
however not universal. Optimality is reached for the Fourier-Dirac case due to 
optimal incoherence:         .µ = 1



* Illustration: exact BP recovery of a signal of length 300, 10-sparse in Fourier, from 30 
time samples (no noise).

l2-minimization l1-minimization

original sampling

Images: courtesy H. Rauhut

Structured random matrices
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III 

NEXT-GENERATION COMPRESSIVE 
IMAGING
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* This compressive sampling technique relies on a random pre-modulation prior to 
Fourier-like random under-sampling... thus spreading the signal spectrum.

Spread spectrum

l1 phase transition diagrams

❖ Efficient (fast Fourier transforms) and realistic. 
❖ Proved optimal and universal for o.n. sparsity bases, and redundant dictionaries. 
Illustration for random s-sparse signals of size N=1024:
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Spread spectrum

l1 phase transition diagrams
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Fourier sampling Spread spectrum sampling
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❖ Efficient (fast Fourier transforms) and realistic. 
❖ Proved optimal and universal for o.n. sparsity bases, and redundant dictionaries. 
Illustration for random s-sparse signals of size N=1024:

* This compressive sampling technique relies on a random pre-modulation prior to 
Fourier-like random under-sampling... thus spreading the signal spectrum.



Spread spectrum

l1 phase transition diagrams
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Fourier sampling Spread spectrum sampling
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❖ Efficient (fast Fourier transforms) and realistic. 
❖ Proved optimal and universal for o.n. sparsity bases, and redundant dictionaries. 
Illustration for random s-sparse signals of size N=1024:

* This compressive sampling technique relies on a random pre-modulation prior to 
Fourier-like random under-sampling... thus spreading the signal spectrum.



* A spread spectrum phenomenon naturally appears in the radio-interferometric 
measurement equation through to the ‘w-component’ of the baselines on large FOV, and 
more generally due to the DDEs, due to their convolutional nature.
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Fornax A radio emission 
Image courtesy NRAO & Uson

Impact in Radio interferometry…
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Fourier sampling

TV reconstruction (0.278 dB)

* Imaging quality at 10% sampling for random Fourier acquisition (30 dB input noise):

Impact in Radio interferometry…
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Spread spectrum sampling

TV reconstruction (21.8 dB)

* Quantum jump in imaging quality at 10% sampling for spread spectrum acquisition 
(30 dB input noise):

Impact in Radio interferometry…



❖ One is often left with a difficult choice to find the best sparsity basis as multiple 
bases offer ‘some’ sparsity. We can enhance the signal model and promote average 
sparsity over a large number of coherent frames: 

❖ The analysis prior consisting in minimising the l0 norm of the signal projection in 
simply corresponds to minimising the average (or total) sparsity over all frames: 

with 
 

 ⌘ 1
p
q
[ 1, 2, . . . q].

* An enhanced signal model can be designed by acknowledging that natural signals 
often exhibit small average sparsity over multiple coherent frames...

SARA

 †
x̄ ⌘ ↵̄ ⌘ [↵̄†

1, · · · , ↵̄†
q]

†.

 

k †
x̄k0 ⇠ 1

q

qX

b=1

k †
bx̄k0,
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* Superiority of SARA for Fourier acquisition on a brain image, for 5% under-sampling, 
i.e. 20-fold acceleration, with 30 dB input noise: visual assessment.

Original Backprojected image 

Impact for MR imaging
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* Superiority of SARA for Fourier acquisition on a brain image, for 5% under-sampling, 
i.e. 20-fold acceleration, with 30 dB input noise: visual assessment.

Original SARA (18.8 dB) 
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Impact for MR imaging



* Superiority of SARA for Fourier acquisition on a brain image, for 5% under-sampling, 
i.e. 20-fold acceleration, with 30 dB input noise: visual assessment.

Original TV (17.3 dB) 
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Impact for MR imaging



TAKE-HOME MESSAGE
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 Compressive sampling enables accurate sparse signal recovery from drastic 
under-sampling, relying on randomness, incoherence, and nonlinear recovery. 

 Beyond the first steps of the theory, new acquisition approaches as spread 
spectrum and enhanced signal models as sparsity averaging are important 
evolutions. 

The theory brings important evolutions for Fourier imaging 
applications, in particular for radio astronomy and medical imaging.


