The multiple personalities of cosmic dust

Stéphanie Cazaux

Groningen, The Netherlands

Nice, the 26th of May 2015

Outline

- Introduction: Cosmic dust
- The multiple personalities of cosmic dust: catalyst VS reservoir
 - Dust as catalyst: from H_2 to water
 - Dust as reservoir: from water to ices \rightarrow deuterium used \rightarrow our oceans
- Dust and star formation
- Summary and Conclusions

Interstellar dust grains

- upper atmosphere (aircraft)
- Falling on earth (40 tons /day)
- Emission/absorption

Interstellar dust grains

Weingartner & Draine 2001 Mathis, Rumpl & Nordsieck 1977

DUST= Silicates, Amorphous carbon, PAHs PAHs = 50% of surface available for chemistry

The interplay between dust, ice and gas

The multiple personalities of cosmic dust

Star form in clouds made of gas + dust

Dust as **catalyst** \rightarrow simple process to form simple species? Dust as **reservoir** \rightarrow composition and complexity of ices? Dust **catalyst/reservoir** impacts gas composition \rightarrow star formation?

Dust as Catalyst: Molecular hydrogen

Diffuse cloud H atomic

 $H \rightarrow H_2$

Molecular cloud H molecular

Dust as Catalyst: Molecular hydrogen

H₂ is the most abundant molecule of the Universe

- $H + e^- \rightarrow H^- + hv$
- $H^- + H \rightarrow H_2 + e^-$

This reaction is not efficient to explain the abundances of H_2 in the Milky Way \rightarrow dust Gould & Salpeter 1963, APJ, 138, 408

H₂ forms on dust particles if small amount of dust is present (10⁻³) *Cazaux & Spaans 2004, APJ, 611, 40*

Model H₂ formation on dust interaction H/surface: **weak** OR **strong** \rightarrow H₂ forms for wide range of T dust

Formation of H₂ on dust: Interaction H/surface

Sha et al, Surface 2002

Formation of H_2

physisorbed atoms @ low T_{dust} chemisorbed atoms @ high T_{dust}

 H_2 forms for a wide range a T_{dust}

Drop in efficiencies at T_{dust} > 20K

H₂ formation on PAHs?

Cazaux & Tielens 2002; 2004

Boschman, L., Reitsma, G., Cazaux, S., Schlathoelter, T., Hoekstra, R., Spaans, M. **Zernike Institute for Advanced materials** in Groningen

Boschman, L. et al. 2012

Boschman, L. et al. 2012

DFT calculations \rightarrow Equilibrium geometries, binding energies and transition states

nн

- Hydrogenation of coronene cations follow a definite sequence (from binding energies and attachment barriers)→ occurrence of stable states 5, 11 and 17 = Magic numbers
- For these stable closed-shell cations: further hydrogenation requires appreciable structural changes → high barriers
- PAHs should be found in very hydrogenated state in ISM H + PAHH → H₂ + PAH
 H₂ increases with number of H UV + PAHH → H and H₂ loss
- H₂ formation in the ISM?

H₂ formation rate: Photo-dissociation Regions

Abergel et al. 1996; Habart et al. 2003

Formation of H₂ PAHs VS dust

Boschman et al. A&A 2015

Formation of molecules on dust

Some reactions on dust → gas Experiments → formation of water surfaces

50 % of water forming on silicates is ejected in the gas upon formation → concerns many more reactions Dulieu et al. 2012, Nature SR

Formation of molecules on dust

This process depends on:

- binding energy products
- degree of freedom of products
- mass relative /surface

chemical desorption process → Essential to quantify how dust impact the chemical composition of star forming regions.

Formation of molecules on dust

Diffuse clouds

Diffuse clouds: H atomic

$O+H \rightarrow OH$ $OH+H \rightarrow H_2O$

Cazaux, S., Cobut, V., Marseille, M., Spaans, M., & Caselli, P. 2010, A&A, 522, A74

Regions exposed to radiation

Formation of water on dust >> gas if Tdust<40K Meijerink, Cazaux & Spaans 2011

Dense clouds

H molecular

$H_2 + O \rightarrow OH + H$

From catalyst to reservoir

- Chemistry on dust \rightarrow impacts the gas
- Different dust temperature imply different chemistry (hydrogenation VS oxygenation)
- As the environment evolve: diffuse \rightarrow molecular the personality of dust changes \rightarrow reservoir

The multiple personalities of cosmic dust

Star form in clouds made of gas + dust

Reservoir: Stealing gas → Ices

brought to planets → asteroids/comets

Dust as **reservoir** \rightarrow composition and complexity of ices?

Dust as reservoir: Interstellar ices

B68 IRAIN 30m; *Bergin et al. 2002* Extinction Av~27 C¹⁸O J=1-0

Prestellar cores: CO depleted from the gas Bergin et al. 2002; Crapsi et al. 2004

Interstellar ices

Hartogh et al. 2011, Nature, 478, 7368, 218

Formation of interstellar ices

• CO and O both freeze out Av ~3 *Hollenbach et al. 2008*

Formation of the ices

Env.	n_{H}	n _{HI}	n_{H_2}	n _{DI}	n_{OI}^a	$n^a_{\rm CO}$	$\mathrm{T}^{b}_{\mathrm{dust}}$	$\mathrm{T}^b_{\mathrm{gas}}$
Translucent	10^{3}	0.5	$5 \ 10^2$	$3 \ 10^{-3}$	0.15	0.15	12	20
	10^{3}	0.5	$5 \ 10^2$	$3 \ 10^{-3}$	0.15	0.15	15	30
	10^{3}	0.5	$5 \ 10^2$	$3 \ 10^{-3}$	0.15	0.15	17	70
Collapsing	10^{5}	0.5	$5 \ 10^4$	$2.5 \ 10^{-2}$	0.001	0.001	12	12

Formation of ices

Formation of ices

Comparison with observations

Deuteration of H₂O widely spread \rightarrow relates physical conditions formation of ices Studying formation of heavy water \rightarrow clues on the origin of our Oceans / conditions of first phases SF

Interstellar ices

Heavy water HDO \rightarrow origin of our oceans?

Our origin \rightarrow cold and dense

Results fro 67 P Ju lite HDO/ Difference

Hartogh et al. 2011, Nature, 478, 7368, 218

Dust and star formation

Star form in clouds made of gas + dust

Dust **catalyst/reservoir** impacts gas composition \rightarrow star formation?

The impact of dust on star formation

Molecular cloud evolution: Hydrodynamic code dust affects

- → Cloud fragmentation
- → Star formation and final masses

The impact of dust on star formation

The impact of dust on star formation

Dust, ice and gas in star formation

- Follow formation/composition of ices with cloud evolution.
- Predict gas content during cloud evolution \rightarrow observables
- During SF \rightarrow CO freeze onto dust \rightarrow less coolant in the gas

Dust, ice and gas in star formation

Cloud Evolution

Hocuk Cazaux & Spaans 2012

Dust, ice and gas in star formation

Initial mass function (mass distribution of stars). Include sink particles to form stars If dust is included \rightarrow leads to IMF similar to Salpeter. More simulations needed for lower masses.

Conclusions

- Interplay between dust, ice and gas is essential to predict/interpret observations
 - Dust catalyst \rightarrow enrich the gas
 - Dust reservoir \rightarrow steals the gas \rightarrow ices (our memories)
- Description of the ISM → crucial to star formation.
 - Divergences from a clouds with/without dust.
 - Preliminary results show that some coolants should be missing to reproduce the observed IMF.

Interstellar dust: The hidden protagonist

Leon Boschman PHD

OF spectrometer

MCP dete

Experiment

Simulations

Seyit Hocuk postdoc

Thank you