Exoplanet atmospheres at high spectral resolution

Matteo Brogi Hubble Fellow, CU-Boulder

I. Snellen, R. de Kok, H. Schwarz (Leiden, NL) J. Birkby (CfA, USA), S. Albrecht (Aarhus, DK)

J. Bean (Chicago, USA), A. Chiavassa (Nice, FR), J.-M. Désert (Amsterdam, NL), E. Kempton (Grinnell, USA), M. Line (NASA Ames), A. Sozzetti (Torino, IT)

> March 31, 2016 Observatoire de la Côte d'Azur, Nice, France

Outline

From finding to characterizing exoplanets

by studying their atmospheres

Detecting molecular species at high spectral resolution

and measuring masses and inclinations in the meanwhile

Constraining the atmospheric properties

thermal inversion layers, rotation, winds

Future applications

Characterizing TESS targets, combining high-resolution spectroscopy and direct imaging

How do we find exoplanets?

RADIAL VELOCITIES

- Periodic shift in stellar lines
- Fit to determine P, a, e
- Lower limit on M_P (i unknown)

TRANSITS

- Planet orbit seen "edge-on"
- Periodic dip in the light curve
- Depth ~ star/planet area

The golden era of exoplanet discoveries

Statistics of exoplanet population

Mostly from Kepler on transiting planets (Fressin et al. 2013)

Measuring the planet bulk density

Planets with measurements of both radii and masses Lighter gray = bigger error bars

The structure and composition of small planets

Plot from Berta et al. (2015) Lighter gray = bigger error bars

The smallest planets seem to be compatible with Earth-Venus composition

Observing exoplanet atmospheres

From statistical to individual properties of exoplanets

Molecular/atomic species, inversion layers, clouds/hazes...

Solving degeneracies between planet interior-envelope

Super-Earths or mini-giants (or something unexpected?)

Linking composition to origin & evolution

Reliable estimates of C,N,O elemental abundances vs. stellar values

Determining surface conditions and hence habitability

Atmospheric circulation, T/p profile, composition, biomarkers...

Atmospheric characterization: transiting planets

Star and planet are **not** spatially resolved Monitoring of the total light from the star+planet system, at various wavelengths

Constraints on molecular species & abundances, T/p profile, longitudinal energy balance

Atmospheric composition and transmission signals

Atmospheric composition and transmission signals

 R_{P}

Jupiter-Sun ~ 1% Earth-Sun ~ 0.008%

Rs

Change in transit depth due to atmospheric opacity

 $\Delta D = nHR_P/(R_S)^2_{\text{Find and target planets orbiting}}$ small stars (late-K and M-dwarfs)

`H = kT/gμ

Target warmer planets with lower density

n ≈ log(∆κ)

Maximize the change in opacity between spectral channels

How do we maximize the signal?

From low- to high-resolution spectra

From low- to high-resolution spectra

Molecular fingerprints at high spectral resolution

Models by Remco de Kok

Hot Jupiters at high spectral resolution

Hot Jupiters at high spectral resolution

Exoplanets at high-spectral resolution

Exoplanets at high-spectral resolution

Wavelength (µm)

Removing telluric lines

The Earth's atmospheric absorption is stationary in wavelength The planet moves along the orbit and it is Doppler-shifted

1

5 hours of real data + 20x planet signal (CO)

Wavelength

Removing telluric lines

The Earth's atmospheric absorption is stationary in wavelength The planet moves along the orbit and it is Doppler-shifted

5 hours of real data + 20x planet signal (CO)

Wavelength

16

Removing telluric lines

The Earth's atmospheric absorption is stationary in wavelength The planet moves along the orbit and it is Doppler-shifted

5 hours of real data + 20x planet signal (CO)

Wavelength

Cross-correlating with model spectra

(Models by Remco de Kok)

Cross-correlation matrix: CCF(RV, t)

Removing telluric lines

The Earth's atmospheric absorption is stationary in wavelength The planet moves along the orbit and it is Doppler-shifted

5 hours of real data + 20x planet signal (CO)

Wavelength

Cross-correlating with model spectra

(Models by Remco de Kok)

Cross-correlation matrix: CCF(RV, t)

Shifting and co-adding to planet rest-frame (Requires knowledge of planet V_{orb})

Planet radial velocity

The orbital motion of τ Boo b

For τ Boo b: $i = (45.5 \pm 1.5)^\circ$, $M_P = (5.95 \pm 0.28) M_{Jup}$

Molecular detections to date

Snellen+ 2010, 2014; Brogi+ 2012, 2013, 2014, 2016; Brikby+ 2013, de Kok+ 2013; Schwarz+ 2014

Rodler+ 2012, 2013; Lockwood+ 2014

6 planets (2 transiting, 3 non transiting, 1 directly-imaged) CO (6), H2O (4) detected Detections on 9/10 datasets Masses and inclinations for non-transiting planets

CH4 and CO2 not (yet) detected

Low abundances expected for CO₂? (e.g. Heng & Lyons 2015) **Uncertainty:** Incorrect / incomplete line lists

Modeling the planet atmosphere

- Parametrized T/p profile
- H₂-dominated (hot-Jupiters)
- Trace gases: CO, H₂O, CH₄, CO₂
- VMR: 10⁻⁷-10⁻⁴ for CH₄, CO₂
- VMR: 10⁻⁵-10⁻² for H₂O, CO
- Clear atmosphere (inclusion of an optically-thick cloud deck is possible)

What do we measure?

Degree of match between data and models (strength of CCF)
 Average line/continuum depth

Transit spectra

Weak dependence on *T* or lapse rate Possible influence of hazes/clouds

Emission spectra

Line depth $\approx \Delta T \Rightarrow$ degeneracy between T_A , lapse rate, abundances

Modeling the planet atmosphere

- Parametrized T/p profile
- H₂-dominated (hot-Jupiters)
- Trace gases: CO, H₂O, CH₄, CO₂
- VMR: 10⁻⁷-10⁻⁴ for CH₄, CO₂
- VMR: 10⁻⁵-10⁻² for H₂O, CO
- Clear atmosphere (inclusion of an optically-thick cloud deck is possible)

What do we measure?

Degree of match between data and models (strength of CCF)
 Average line/continuum depth

Removing degeneracies

Larger spectral range (ideally the whole NIR) Absolute fluxes from broad-band / low-res measurement

Dayside spectra and thermal inversions

Line depth traces T difference (continuum vs. core)

- $dT/dlog(p) > 0 \Rightarrow$ Absorption lines
- $dT/dlog(p) < 0 \Rightarrow$ Emission lines

The cross-correlation naturally detect inversion layers (Models with the wrong *T-p* profile produce anti-correlation)

All high-resolution observations have detected absorption lines (But stay tuned for Brogi+ in prep.)

No evidence of inversion layers to date in the literature (Knutson+ 2008, 2010; Diamond-Love+ 2014; Schwarz+ 2014)

Testing the synchronous rotation of hot Jupiters

HJs become **tidally locked** on short timescales: $P_{orb} = P_{rot}$ HJs have 2 main regimes of **atmospheric circulation**

Day- to night-side winds

Rotation and winds broaden and distort the planet line profiles (Showman+ 2012; Miller-Ricci Kempton+ 2012, 2014; Rauscher & Kempton 2014)

Testing the synchronous rotation of hot Jupiters

HJs become **tidally locked** on short timescales: $P_{orb} = P_{rot}$ HJs have 2 main regimes of **atmospheric circulation**

Equatorial super-rotation

Day- to night-side winds

Testing predictions on HD 189733 b

1.1 M_{Jupiter}, 1.2 R_{Jupiter}, K1-2V star

Rotation and winds broaden and distort the planet line profiles (Showman+ 2012; Miller-Ricci Kempton+ 2012, 2014; Rauscher & Kempton 2014)

2 hrs of VLT/CRIRES = 1 transit @ 2.3μm

The transmission spectrum of HD 189733b

 $VMR(CO) = VMR(H_2O) = 10^{-3}$

No detection of CH₄ or CO₂

22

Modeling the broadened planet line profile

Day-to-night side winds

$$V_{\text{rest}} = (-1.7^{+1.1}_{-1.2}) \text{ km/s}$$

Compare with optical high-resolution transmission spectra (Na doublet)

Wyttenbach+ (2015)Louden+ (2015) $V_{rest} = (-8\pm2) \text{ km s}^{-1}$ $V_{rest} = (-1.9^{+0.7} - 0.6) \text{ km s}^{-1}$

Day-to-night side winds

Compare with optical high-resolution transmission spectra (Na doublet)

Wyttenbach+ (2015)Louden+ (2015) $V_{rest} = (-8\pm2) \text{ km s}^{-1}$ $V_{rest} = (-1.9^{+0.7}_{-0.6}) \text{ km s}^{-1}$

NB: Our data constrains independently orbital, rotational, and wind velocity!

Targeting smaller and fainter planets

Brogi+ in prep.

Sample: H < 11 mag, M_P > 0.05 M_{Jup}, R_P > 0.35 R_{Jup}

Simulations: APO 2.5m + Apogee (R=22,500, full H band)

Spectrum: 1.5-1.7µm, H2O spectrum for HD 189733 b, scaled by: scale height, planet/star radius, host-star H-band magnitude

Trading mirror size for better spectrographs

Apogee@APO: ~70% S/N of VLT/CRIRES for equal observing time

	VLT	Apogee	SNR (Apogee/VLT)
Mirror size	8.2m	2.5m	0.305
Spectral resolution	100,000	22,500	0.47
Spectral range	50 nm	190 nm	1.9
Throughput	2.0-2.5%	~15%	2.6
Total			0.71

Detection estimated by observing a target every time there is a transit

Work in progress

 CH_4 and CH_4+H_2O models: relative VMRs Apply the calculations to the expected yield of **TESS** (Sullivan+ 2015)

Work in progress: HDS in the TESS era

TESS yield from Sullivan+ 2015

- 250,000 target stars
- 1,700 detections
- 67 R_P > 4 R_{\oplus}
- 1,100 with 2 R_{\oplus} < R_P < 4 R_{\oplus}
- 556 with R_P < 2 R_⊕: 419 around M-dwarfs
 137 around FGK stars
 130 brighter than K = 9 mag

Adapting the APO simulations to range of spectra for super-Earths

Exploring a range of current and next-generation NIR spectrographs

VLT 8m + NACO β Pictoris position of the star (artificially subtracted)

0.5 arcsec

10 AU

1996 - ESO 3.6m + ADONIS

dust disk in J band (1.3 μm) (first imaged in 1984)

> giant planet β Pic b seen in L' band (3.8 μm) in October 2003

size of Saturn's orbit

around the Sun

.... in November 2009

Image: courtesy of D. Ehrenreich

Snellen+, Nature, 2014

Young exoplanet (12-21 Myr) 0.44" separation (8.8 AU) 2.6×10⁻⁴ contrast

No change in planet RV during the night (Combining high-dispersion spectroscopy and high-contrast imaging, Snellen+ 2015)

GPI first light - β Pic b Macintosh et al. (2014)

Snellen+, Nature, 2014

Young exoplanet (12-21 Myr) 0.44" separation (8.8 AU) 2.6×10⁻⁴ contrast

No change in planet RV during the night (Combining high-dispersion spectroscopy and high-contrast imaging, Snellen+ 2015)

MACAO@VLT (Simulated)

Snellen+, Nature, 2014

Young exoplanet (12-21 Myr) 0.44" separation (8.8 AU) 2.6×10⁻⁴ contrast

No change in planet RV during the night (Combining high-dispersion spectroscopy and high-contrast imaging, Snellen+ 2015)

Snellen+, Nature, 2014

Young exoplanet (12-21 Myr) 0.44" separation (8.8 AU) 2.6×10⁻⁴ contrast

No change in planet RV during the night (Combining high-dispersion spectroscopy and high-contrast imaging, Snellen+ 2015)

Snellen+, Nature, 2014

Young exoplanet (12-21 Myr) 0.44" separation (8.8 AU) 2.6×10⁻⁴ contrast

No change in planet RV during the night (Combining high-dispersion spectroscopy and high-contrast imaging, Snellen+ 2015)

β Pic b rotates in only 8 hours!

Cross-correlation function broadened by 27 km/s

β Pic b rotates in only 8 hours!

Cross-correlation function broadened by 27 km/s

A test for the next decade!

High Contrast Imaging: 10⁻⁴ planet/star contrast

High-Dispersion Spectroscopy: 10^{-5} core/continuum contrast (photon limited) $\Rightarrow 10^{-9}$ planet/star contrast achievable

Simulating HDS+HCI: Metis @ E-ELT

Earth-like planet (R=1.5 R $_{\oplus}$, T=300K) orbiting α Cen B (Snellen+ 2015)

Terrestrial planets around dwarf stars

The planet/star contrast increases for smaller stars

You are here!

M5-dwarf

M-dwarfs are the most-common stars in the solar neighborhood!

Transiting terrestrial planets around M-dwarfs

O₂ in transmission Earth-size planets orbiting M-dwarfs

1/3 of the dayside signal from τ Boo b

Challenge: $I = 10-11 \text{ mag} (M-dwarf) \text{ vs. } K = 3.4 \text{ mag} (\tau \text{ Boo})$

39m E-ELT, 30 transits (3 years) \Rightarrow 5 σ detection!

Conclusions

High-resolution transmission spectroscopy can characterize exoplanets

- Robust molecular detections
- Masses, inclinations of non-transiting planets
- Winds and planet rotation
- Inversion layers
- Relative molecular abundances and C/O ratio
- Can be combined with direct imaging
- Ideal to complement JWST in following-up TESS targets
- Potentially suitable for targeting rocky planets in HZ of M-dwarfs!