Discovery of starspots on Vega

First spectroscopic detection of surface structures on a normal A-type star

Torsten Böhm

Observatoire

CINICS

Seminaire Laboratoire Lagrange OCA 2. Février 2016

Rotation, pulsation and magnetism of standard A type stars

Meridian cut:

Our understanding of A-type stars until 2009:

Radiative envelopes:

- no magnetic field generation
- no surface structures

The "Vega" Project:

- search for stellar oscillations in rapidly rotating A stars new theoretical approach
- search for weak magnetic fields in standard A-type stars
- velocimetry: are there signs of activity, rotational modulation?
- In rapidly rotating A stars in

Is Vega the ideal candidate? ...

Bright, rapidly rotating standard A-type star

Takeda's best fit model (Takeda et al. 2008, ApJ, 678, 446): :

Model No.	ve (km s ⁻¹)	Ω	i (deg)	R (R⊙)	θ (mas)	log g (cm s ⁻²)	T _{eff} (K)
4	175	0.44	7.2	2.520 2.763	3.308 3.313	3.997 3.823	9867 8931

Vega is bluewards the δ Scuti instability strip...

Pole Equator

Sophie/OHP data set (2012) Signs of variations in equivalent photospheric profiles

High resolution spectroscopy of Vega... ... the beginning

- 4500 polarimetric spectra
 (3 nights NARVAL/TBL 2008 3 nights ESPADONS/CFHT 2009 5 nights TBL 2010)
- Spectral resolution of R = 65000 75000 (depending on the instrument)
- very short exposure times: 4 13 seconds
- ESPADONS/NARVAL in Polarimetric mode (discovery of a weak magnetic field) •(Lignières et al., 2009, A&A 500, L41)
- Data reduction with ESPRIT software and LSD profile calculation (Donati, 1997)
- Telluric lines used for radial velocity calibration (precision close to 5-10 m/s)

Discovery of a new class of magnetic A type stars: "Vega-like"

- B = -0.6 + -0.3 G disk averaged line of sight component of the surface magnetic field
- Maximum B (spots) = 7G

Ultrafaint pulsation signatures in a rapid rotator? Result of a high-res spectroscopic analysis of 4500 spectra

radial velocity variations

ID	freq.	A
	d ⁻¹	m s ⁻¹
F1 ₂₀₀₈	9.19	5.8
F22008	5.32	5.9
F1 ₂₀₀₉	12.71	7.3
F2 ₂₀₀₉	13.25	7.6
F1 ₂₀₁₀	5.42	4.2
F2 ₂₀₁₀	10.82	3.3

(Böhm et al. 2012)

Search for line profile variations in Vega

- First indications for pulsations inVega (CFHT, TBL, 4500 spectra in 2008,9,10)
- spectrographs Narval/TBL and Espadons/CFHT unstable no access to low frequencies
- indications of some higher frequencies– pulsations?
- Vega needed to be re-observed with a stable instrument SOPHIE/OHP

Need for observations in high precision velocimetry...

- 5 nights with SOPHIE/OHP August 2012 (2600 spectra)
- Intrinsic stability of 2 m/s
- High resolution echelle spectrograph

High-resolution velocimetry with SOPHIE/OHP 2012

Date	BJD _{first}	BJD _{last}	N _{spec}	texp (sec)	t _{cov} (hrs)	S/N
(1)	(2)	(3)	(Â)	(5)	(6)	(7)
Aug. 2 2012	6142.3308	6142.6238	425	17-30	7.0	884±202
Aug. 3 2012	6143.3528	6143.6436	629	10-15	7.0	925±145
Aug. 4 2012	6144.3412	6144.6423	628	10-17	7.2	850±121
Aug. 5 2012	6145.3788	6145.6442	402	13-17	6.4	766±103
Aug. 6 2012	6146.3444	6146.6423	504	17-25	7.1	808±115

Fig. 1. mean equivalent photospheric (LSD) profile of Vega, stronger lines only, rescaled in depth.

- Line selection above certain threshold (gravitational darkening)
- Esprit data reduction pipeline (Donati). Calculation of LSD profiles.
- Calculation of bisectors, radial velocities, vspan, moments, correlations...
- Search for periodicities, Lomb Scargle analysis, Multi-sine leastsquare fitting, 2D methods

Vspan - bisector analysis

Radial velocity - different estimators

Rotational modulation! Indications of a structured surface?

vspan

ID	freq.	A	Comment
	d ⁻¹	m s ⁻¹	
F1	1.457	69.32	F _{rot}
F2	2.02	22.93	2 F _{rot} -1.
F3	0.40	47.52	
F4	8.34	13.30	5 F _{rot} + 1.
F5	11.31	14.17	7 F _{rot} + 1.
F6	5.78	14.09	4 F _{rot}
F7	8.04	12.59	
F8	16.21	8.23	11 Frot
F9	5.43	9.05	3 F _{rot} +1
F10	10.70	8.92	9 F _{rot} -1

Anticorrelation vspan - vrad

Vrad_first moment

ID	freq.	A	Comment
	d ⁻¹	$m s^{-1}$	
F1c -1	0.77	6.16	F1c = 1.77
F2c	3.34	4.32	3F _{rot} - 1? F2 ₂₀₀₈ -2 ? F1 ₂₀₁₀ -2 ?
F3c	4.97	3.78	4F _{rot} - 1?
F4c	1.48	4.01	Frot
F5c	24.47	2.17	$16F_{rot} + 1?$
F6c	14.24	2.42	$F2_{2009} + 1$?
F7c	8.29	2.12	$5F_{rot} + 1?$
F8c	5.53	2.30	
F9c	11.78	2.61	F1 ₂₀₀₉ -1 ? F2 ₂₀₁₀ +1 ?
F10c	14.67	2.68	10F _{rot}

Radial velocity variations induced by a starspot on Vega

Fig. 5. Simulation of the relative radial velocity variations induced by a spot (of same size) located at latitude (figures left, top to bottom): $+60^{\circ}$, $+8^{\circ}$, 0° and -6° for Vega (inclination angle i= 7° (the star is seen almost pole-on). Figures right, top to bottom show the respective Lomb Scargle periodograms. The spot position at latitude $+60^{\circ}$ is taken as the reference with respect to the radial velocity and Lomb Scargle power spectrum amplitude.

Presence of an exoplanet (F = 1.77 c/j)?

An additional frequency is seen in the Lomb Scargle periodicity analysis of Vrad!

- close to jupiter mass
- $R_{orbit} \sim 1.36 R_{vega}$
- close to co-rotation radius
- Exoplanet migration?

Velocity (km/s)

Minimum dispersion with Vega's rotation period of 0.678d

...after a tough refereeing process...

First referee A&A:

« If this finding is real, we would have to make a fundamental review on the nature of superficially normal A stars »

...press releases

As a service to authors and readers, full-text articles and references in HTML of the most recent ar

Advar

ARTICLE PREVIEW

view full access options

NATURE | RESEARCH HIGHLIGHTS

ASTRONOMY Spots spotted on Vega star

Nature **521**, 262 (21 May 2015) | doi:10.1038/521262b Published online 20 May 2015

Register now | Login

Press Release

Latest articles Free

Issue	A&A Volume 577, May 2015
Article Number	A64
Number of page(s)	12
Section	Stellar structure and evolution
DOI	http://dx.doi.org/10.1051/0004-6361/201425425
Published online	06 May 2015

A&A 577, A64 (2015)

Discovery of starspots on Vega

Free access

charge on registration for non-subscribers to the journal.

First spectroscopic detection of surface structures on a normal A-type star

Pulsation, magnetism and rotation of intermediate mass stars

Vega is "active" - and the others?

- What is the implication on the magnetic fields of intermediate mass stars?
- DI ZDI What is the link between active plages and magnetic field regions?
- What is the origin of the magnetic field of "normal" A-type stars?

A&A 577, A64 (2015) DOI: 10.1051/0004-6361/201425425 © ESO 2015

Discovery of starspots on Vega*

First spectroscopic detection of surface structures on a normal A-type star

T. Böhm^{1,2}, M. Holschneider³, F. Lignières^{1,2}, P. Petit^{1,2}, M. Rainer⁴, F. Paletou^{1,2}, G. Wade⁶, E. Alecian⁵, H. Carfantan^{1,2}, A. Blazère^{1,2}, and G. M. Mirouh^{1,2}

Neo-Narval

Neo-Narval, spectropolarimetry and velocimetry at TBL

Torsten Böhm

Séminaire Nice OCA, 2 Février 2016

Observatoire 3

Narval at TBL/Pic du Midi - today

٠

•

•

٠

News from Neo-Narval

Torsten Böhm

Neo-Narval

Neo-Narval, a spectropolarimeter stabilized in radial velocity

High-resolution spectrographs

Instrument	range	range	POLAR	Stability (< 5m/s)	Resolution
	380-690nm	690-1000nm	QUV	night - long term	
CHIRON (S1.5m)	from 415nm	up to 880nm	NO	7 - ?	up to 136000
HARPSPOL (S4m)	YES	NO	YES	0.2 - 0.2	120000
HARPSNorth (N2m)	YES	NO	NO	0.2 - 0.2	120000
HERMES (N1.2m)	YES	up to 900nm		2.5 - 60	85000
SOPHIE (N2m)	YES	NO	NO	2 - 2	76500
PEPSI (N2x8m)		In project		~3 - 100	up to 300000
Narval (N2m)	YES	YES	YES	30	65000 or 75000
& Espadons (N3.6m)					
Neo-Narval (N2m)	YES	YES	YES	<3 - <3	65000
UVES (S8m)	YES	YES	NO	~10 - 500	up to 110000
PSF (\$6.5m)	YES	NO	NO	1 - 1	40000
HDS (N8m)	YES	NO	NO	5	55000
HIDES (N1.88m)	YES	NO	NO	6	67000

Availability: 100% at TBL!

Astronet Science Vision (european prospective, update 2013):

- Do we understand the extremes of the universe?
- How do galaxies form and evolve?

Neo-Narval

- What is the origin and fate of stars and planetary systems?
 - How do we fit in?

Stellar magnetism

- Origin of stellar magnetic fields (mecanisms)
- Magnetic activity
- Systematic study of the HR diagram

Birth and death of exoplanetary systems

- Exoplanets around magnetic stars
- End of life of exoplanets around evolved stars
- Ground based support to Gaia, Tess, Plato space missions

Disentangling of observed physical effects

Origin of magnetic field: the case of Vega (AO)

Exoplanets around evolved stars...

Exo-planet or magnetic field?

- Tess, Gaia et Plato: telluric planets around solar type stars
- Hot and warm Jupiters are detected in the same time: Neo-Narval could ideally do this follow-up!

Radial velocity precision	Telescope size	Type of object	Required number of nights
10m/s	1-2m	Giant planets on short or intermediate orbits	50 nights/year for >3 tel., 6 yrs
1m/s	4m	Giant planets on long orbits. Super-earths on short and interm. orbits.	40 nights/year for 3 tel., 6 yrs
< 20cm/s	8m	Earths/Super-Earths on long orbits	40 nights/year for 1 tel, 6 yrs

Plato yellow book

Towards a veloci-spectro-polarimeter

Radial velocity precision: better than 3 m/s long-term

Torsten Böhm (PI), Rémi Cabanac

Clément Baruteau, Pascal Petit, Francois Lignières, Frédéric Paletou, Arturo Lopez Ariste, Thierry Roudier, Philippe Mathias, Michel Rieutord, Boris Dintrans, Coralie Neiner, Evelyne Alecian, +...

Jean-Baptiste Daban

Laurent Parès, Francis Lacassagne, Yoan Micheau, Marc Bouyé, Laurent Guesdon, René Dorignac, Philippe Beau, Didier Laurent, Maxime Viau, Gilles Malbreil, Philippe Ambert, Pascal Payssan, Eric Chereau, Bruno Dubois, +...

+ external consultants (CS TBL, Observatoire Genève, ESO,..)

- Versatile instrument (different communities), not a unique scientific focus
- Existing instrument, not a new construction
- Don't loose existing assets (throughput, coverage, resolution) ... if possible
- Limited funding (500k€), manpower and time (mid 2018)
- Minimum telescope shutdown time (< 2 months if possible)
- Optimizing the duty cycle

• How do we fit in?

- ``Impossible'': symmetric mount of the optics, vertical design, in vacuum vessel
- Uniform light injection
 - Octogonal fibres + fibre scrambler
- Stabilizing the refractive index as seen by the dispersive elements
 - Grating (prisms, lens) in vacuum or constant pressure vessel ($\Delta P < 5\mu bar$)
- Thermalizing the environment ($\Delta T < 0.01K$) for maximum mecanical stability
- Simultaneous 3rd fibre for continuous calibration
 - Increased dispersion (additional prism + correction lens)?
 - Increased CCD size (4k4k EEV 15µm pixel size)?
 - Stabilized Fabry-Perot (stable to better than 1m/s long-term)
- New CCD (deeply depleted, without fringes in the R/IR)
- Optimized Data Reduction Software

Isobaric vessels – pros and cons

Dense mechanical layout – space for isobaric vessel?

....where putting the isobaric vessel?

Simultaneous calibration – need for increased cross-dispersion....?

2k4.5k CCD – correcting the red by the blue?

New CCD: deeply depleted or not....?

Data Reduction Software

Horizon 2020+: Simultaneous observations Neo-Narval and SPIP?

