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Splitting of the Sun's global oscillation frequencies by large-scale 
ows can be

used to investigate how rotation varies with radius and latitude within the so-

lar interior. The nearly uninterrupted observations by GONG yield oscillation

power spectra with high duty cycle and signal-to-noise ratio. Frequency split-

tings derived from GONG observations con�rm that the variation of rotation

rate with latitude seen at the surface carries through much of the convection

zone, at the base of which is an adjustment layer leading to latitudinally inde-

pendent rotation at greater depths. A distinctive shearing layer just below the

surface is discernible at low to mid latitudes.
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On the timescale of stellar evolution, the Sun is a middle-aged star. The surface

rotation rates of young solar-type stars are observed to be up to 50 times that of the Sun.

It is therefore believed that the Sun has been losing angular momentum over its lifetime

through its magnetized wind, thereby gradually spinning down its outer convection zone

and probably the bulk of its interior. The e�ectiveness of the overall spindown of the star is

di�cult to estimate from stellar evolution theory, for one must cope with delicately balanced

circulations and instabilities that would tend to mix the interior, and magnetic �elds that

may retard or modify such processes (1). This has led to suggestions that the Sun might

still possess a rapidly rotating core, perhaps highly magnetized, re
ecting its primordial

past. The apparent de�cit of neutrinos coming from the Sun's energy-generating core has

also prompted ideas for readjusting the chemical composition and strati�cation in models of

the nuclear-burning core, and these have implications for the mixing of angular momentum

there (2).

Tracking of surface features has shown that the Sun does not rotate as a solid body: it

rotates once in about 25 days near the equator and in about 33 days near the poles. Further,

the rotation rate of sunspots at mid-latitudes is somewhat faster than that deduced from

Doppler shifts of the surface plasma, suggesting that the magnetic �elds of the spots may be

rooted to more rapidly rotating plasma deeper down in the convection zone, which occupies

the Sun's outer 30% by radius (3). Theoretical studies indicate that turbulent compressible

convection couples with rotation to redistribute the angular momentum away from simple

solid-body rotation, leading to di�erential rotation and meridional circulations. Moreover,

the interplay of turbulent motions and rotation with magnetic �elds is generally believed

to be responsible for magnetic dynamo action that leads to the observed 22-year cycles

of sunspots and solar magnetic activity (4). During the past decade, helioseismology has

begun to provide the means to estimate the rotation pro�le of the interior of the Sun. The

helioseismic �ndings are not compatible with the predictions of most theoretical models of

the rotation pro�le set up by turbulent convection in the Sun's envelope (5), which raises

serious doubts about our current understanding of global-scale solar convection. Here, we

use the nearly continuous observations by GONG to probe the dynamical state of the solar

convection zone and the deeper radiative interior.
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The horizontal structure of each global mode of oscillation of the Sun is described

by a spherical harmonic Y

m

l

of degree l and order m, and the vertical structure by l and

the radial order n. Opposite signs of m correspond to modes propagating in opposite

directions around the Sun's equator. In a spherically symmetric star the frequencies depend

upon n and l but not on m, so for each (n; l) pair there is a (2l + 1){fold degeneracy.

Rotation breaks the spherical symmetry and lifts the degeneracy. Advection causes a wave

propagating with the Sun's rotation to have a higher measured frequency than a similar

wave propagating against the rotation. The di�erence in frequency of a pair of oppositely

propagating modes is proportional tom times a weighted average of the rotation rate 
(r; �)

in the region of radius r and latitude � where the modes have appreciable amplitude. We

de�ne the frequency splitting ��

nlm

to be half the value of this di�erence. Each frequency

splitting measures a longitudinal and temporal average of the zonal 
ows over the period

of the observations (6). Di�erent modes have di�erent spatial sensitivity, so the observed

frequency splittings can be used to make inferences about spatial variations in 
.

There were several early attempts (7) to measure rotational splittings, but the �rst

de�nitive results yielding estimates of 
 over a range of depths were obtained from ob-

servation of intermediate-degree sectoral (m = �l) modes (8). The frequency splittings

yielded inferences for 
 close to the equatorial plane, suggesting that much of the interior

of the Sun rotates slightly less rapidly than the surface, while the central region appears

to rotate more rapidly. Such data also indicated that the quadrupole moment J

2

of the

Sun's exterior gravitational �eld is consistent with General Relativity. These studies were

soon followed by full-disk imaging observations that yielded information on a wide variety

of tesseral (0 < jmj < l) modes, thereby providing estimates of the internal rotation away

from the equatorial plane (9 { 14).

Helioseismic data have revealed that the surface rotation rate persists through much

of the convection zone on radial lines, and that there is a transition at or near the base

of the convection zone to rotation that is independent of latitude. The sidereal rotation

rate beneath the convection zone { roughly 440 nHz { is such that the latitudinally aver-

aged speci�c angular momentum appears to be nearly constant across the convection zone
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boundary, suggesting that there is no net torque exerted across the transition (15). The ro-

tation in the radiative interior beneath the convective envelope seems to be consistent with

rigid-body rotation. The rotation rate of the core is less certain: some reported low-degree

splittings favor a rotation rate faster than the equatorial rate at the surface (16), and others

a somewhat slower rate (17).

The convection in early numerical simulations of rotating convection in spherical

shells was dominated by columnar roll-like cells orientated in the north-south direction. The

tilting of these cells yielded Reynolds stress terms that drove zonal 
ows, which appeared

as di�erential rotation (18). The convection models predicted that 
 was nearly constant

along the axes of the columnar cells, and thus that angular velocity was nearly constant on

cylinders aligned with the rotation axis and decreased with depth in the equatorial plane.

In contrast, the helioseismic data imply that angular velocity is roughly constant on radial

lines. Recent numerical studies capable of describing more turbulent compressible 
ows

have yielded more intricate pro�les for 
, although there is still some tendency for angular

velocity to be constant on cylinders close to the equator (19). A likely explanation of the

discrepancy between simulation and helioseismic inferences is that the spatial resolution

in the theoretical convection models is capable of describing only mildly turbulent 
ows,

whereas fully developed turbulence involving coherent structures embedded in otherwise

chaotic 
ow �elds may yield quite di�erent mean 
ows and rotation pro�les.

Interpreting Frequency Splittings

The splitting ��

nlm

caused by the rotation 
(r; �) can be written as

��

nlm

=

m

2�

Z

K

nlm

(r; �)
(r; �) r dr d� ; (1)

where K

nlm

are weighting functions, known as rotation kernels (Fig. 1). The kernels re
ect

the vertical and horizontal structure of the mode eigenfunctions. Because the spherical

harmonics are either purely symmetric or purely antisymmetric about the equatorial plane,

the amplitude of oscillation is symmetric about the equator and hence so too are the rotation

kernels. Consequently, Eq. 1 implies that the splitting is sensitive only to that component of
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 that is symmetric about the Sun's equatorial plane. Other contributions to the splitting

might come from latitudinal variations in structure or a magnetic �eld that is axisymmetric

about the rotation axis. Such contributions are distinguishable from the rotation splitting

because only the latter is antisymmetric in m.

Because the integrals of the rotation kernels are close to unity, the overall magnitude

of the observed splittings readily provides an estimate of the Sun's internal rotation rate.

A simple way to proceed further would be to model the internal rotation pro�le with a few

parameters, use Eq. 1 to compute the splittings corresponding to such a pro�le, and adjust

the parameters to match the observed splittings. A more systematic approach would be to

note that di�erent modes are sensitive to the rotation in di�erent parts of the interior in a

way that varies systematically with mode parameters. Modes sample the rotation rate in

a cavity that extends from the surface down to a depth that increases with �=L, where �

is the frequency of the mode and L =

p

l(l + 1). Hence low-degree modes are sensitive to

rotation from the surface to the core, whereas high-degree modes are only sensitive to the

rotation close to the surface. In the latitudinal direction, modes sample the rotation between

latitudes � cos

�1

(m=L). Thus the dependence of the splittings on �=L and m=L may guide

the construction of forward models for the rotation as a function of radius and latitude. For

instance, splittings of modes with m � �l show how the near-equatorial rotation varies with

depth (Fig. 2). Each value of �=L corresponds to a radius r

t

to which such a mode penetrates,

and thus the splitting represents a weighted average of the equatorial rotation between the

surface and the radial location r

t

. Thus the GONG data reveal that in the equatorial regions

the rotation rate �rst increases with depth and then decreases. Suitable combinations of

splittings sample the rotation rate at other latitudes (20). A data combination appropriate

for a latitude of 30

�

(Fig. 2) shows that the Sun rotates less rapidly at this latitude than at

the equator, as is also observed from surface measurements. The rotation initially increases

with depth at this latitude, but less strongly than at the equator.

Alternatively, one can use one of several inverse techniques. Here we apply two such

techniques to the GONG data. Suppose that one can �nd a linear combination of the ro-

tation kernels that is peaked at some chosen location within the Sun and small elsewhere
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(Fig. 1). Since Eq. 1 is linear, the same linear combination of the measured splittings pro-

vides a weighted average of the internal rotation rate in the Sun, weighted by the averaging

kernel. Provided the averaging kernel is localized, it yields an estimate of the rotation rate

in some localized region of the solar interior. By repeating this for di�erent target locations,

one can build a picture of the rotation rate inside the Sun. The construction of localized

kernels is the essence of the Optimally Localized Averages (OLA) method, also known as

the Backus-Gilbert method (22,23). Another approach to inversion is to �t a parametric

model of the internal rotation rate to the data with a least squares �t. Because our problem

is ill-conditioned, we use a regularized least squares (RLS) method, with a penalty function

that penalizes solutions that vary on small length scales. In our formulation, the solution at

each point is a linear combination of the data, and thus provides an estimate of the rotation

rate as sampled by the corresponding linear combination of the rotation kernels, just as in

OLA (24).

Inferences From GONG Data

Inversions of GONG splitting data by OLA and RLS methods (Fig. 3), in the re-

gion where they can reasonably be determined with the four-month data set, are in good

agreement (25 { 27). In the convection zone above latitude � 30

�

, the data show that the

rotation rate at �xed latitude is roughly independent of depth, so that the variation with

latitude is similar to that seen at the surface. Near the equator, the rotation rate increases

just below the surface and reaches a maximum at roughly r = 0:95R (where R is the radius

of the Sun). It then gradually decreases with depth in the convective envelope. At the base

of the convection zone near r = 0:7R, there is a pronounced transition at all latitudes to

nearly uniform rotation at greater depths (Fig. 4). The structure of the transition is not

resolved by the data. Thus the GONG data support earlier deductions that the surface-like

di�erential rotation is smoothed out near the base of the convection zone and the rotation

below appears to become independent of latitude. The data from GONG currently permit

reliable inferences only to a depth of about r = 0:4R, and the use of global modes yields

little information near the poles (28).
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These inversions indicate the presence of two layers with strong horizontal shear in

the mean azimuthal velocity, one positioned just below the surface and at the other at the

base of the convection zone. In contrast, gradients in 
 are mild in the rest of the convective

envelope. These results are in accord with analyses of earlier helioseismic data, although

our con�dence in the inferences made from the nearly continuous GONG data is enhanced

by the improved determination of frequency splittings with m, because GONG spectra do

not su�er from daily sidelobes, which plague single-site, ground-based observations.

The presence of an upper shear layer is consistent with the observation that at low

latitudes sunspots and supergranulation patterns rotate faster than the surface gas (29).

Perhaps near-surface convective motions with overturning times short compared to the ro-

tation period (and thus only mildly in
uenced by Coriolis forces) conserve their speci�c

angular momentum as they move radially inward and toward the rotation axis, leading to

a faster latitudinally varying rotation rate than at the solar surface (30). Alternatively,

recent numerical simulations of highly turbulent rotating convection within limited domains

(31) exhibit prominent shear layers close to where the radial velocity vanishes on surfaces

that bound the zone of convection, and across which no net stresses are communicated.

The convection models yield such shear layers only in the presence of intense small-scale

turbulence; and such levels of turbulence have not yet been attained in models of convection

in full spherical shells spanning a broader physical domain. Yet the real solar convection

zone must be far more turbulent than any 
ows studied by simulation (19). Moreover, it

possesses the added complexities of magnetic �elds and the ionization zones of hydrogen

and helium close to its surface. It has been conjectured that the combined presence of the

ionization zones and the rapid variation in strati�cation near the surface may contribute to

the lateral de
ection of large-scale convective motions, leading possibly to substantial hori-

zontal 
ows below the surface and only relatively feeble motions in the directly observable

atmosphere. Such giant cells are expected to possess horizontal dimensions comparable to

the depth of the convecting shell. Giant cells have not yet been observed with any certainty,

but the structure of the upper shearing layer detectable from helioseismic data, and the

manner in which it varies with latitude, may eventually provide clues to the nature of co-

herent long-lived structured 
ows that may coexist with small-scale turbulence within the

7 2 May 96 Dynamics Thompson, Toomre et al.



solar convection zone. The extent to which the shear layer extends to higher latitudes is

uncertain from current observations using the global modes: there is a hint in the inversions

that the shear changes sign at mid-latitudes (Fig. 3).

An alternative way of probing the upper shear layer is provided by helioseismic anal-

yses of acoustic wave �elds within a localized area, using time-distance or ring-diagram

methods (32). Ring analysis applied to some GONG data is shown in Fig. 5. Mosaics

of such measurements may be used to map out the mean 
ows with depth beneath each

patch, using a one-dimensional inversion in depth. The local mean horizontal 
ows appear

to spiral with depth in the immediate sub-surface layers, suggesting that the shearing 
ows

may possess more intricate structure than that deduced from the properties of the global

modes. Such local-area techniques would bene�t from higher spatial resolution that future

upgrades to GONG may provide.

The second shear layer at the base of the convection zone (Figs. 3, 4) is a transition

from the angular velocity pro�le of the convective envelope to a pro�le of possible solid-

body rotation in the deeper radiative interior (33). This transition layer is likely to be

dynamically complicated, for it is just below, or may even be part of, the overshooting

region in which penetrating convective motions, probably in the form of discrete plumes, are

rapidly decelerated as they encounter the stable strati�cation of the interior. Helioseismic

�ndings that the radial gradient of the rotation rate is small in the convection zone itself

has shifted attention to this transition layer as the site of the magnetic dynamo (34). One

would like to know the nature of the strati�cation and the mean shearing 
ows achieved

in the layer in order to assess how thick a region is available for making and storing the

magnetic �elds. However, inferences about the transition in rotation pattern and in mean

strati�cation are still uncertain because the resolution permitted by the helioseismic data

is still too poor there. With available data, the characteristic full width at half maximum

(FWHM) of an averaging kernel peaked at low latitudes near the base of the convection

zone is roughly 0:1R. This is essentially the radial resolution, and it is not possible to say

whether the transition is abrupt or broad (35).
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Beneath this transition layer, down to radius 0:4R where we can reliably make in-

ferences with this data set, the rotation appears to be consistent with solid-body rotation.

The latter may seem plausible since it represents the lowest energy state for a speci�ed

total angular momentum. Yet how that may be achieved within the Sun is uncertain, for

models incorporating angular momentum transport by circulations and hydrodynamic in-

stabilities favor an interior, and especially a core, rotating considerably faster than the solar

surface (1). A weak connected magnetic �eld pervading the whole of the radiative interior

could cause this region to rotate uniformly (36): one would presume that the �eld does not

penetrate the shear layer, where it would be stretched, but has been expelled by the tur-

bulence (37). It has also been suggested that internal gravity waves excited by penetrative

convection propagate inward, transporting angular momentum radially (38). However, the

observed limited depletion of lithium in the solar envelope places important constraints on

such spin-down processes as would also mix material from the convection zone to the hotter

regions beneath, where the lithium would be destroyed (39). Helioseismic probing of the

deep radiative interior should help to resolve these questions, for we can expect to improve

greatly the resolution and the range of depths over which we can make reliable inferences

as we accumulate more data from GONG.

Similar results to those in Figs. 3,4 have also been derived from the GONG data set

using 1.5D inversion methods and by forward modeling. These strengthen our conclusions

regarding the rotation rate. It must be borne in mind that the rotation rate we determine

using the splittings of the global modes is an average in longitude and time, and is only a

north-south symmetric average. Furthermore, the limited spatial resolution (40) results in

smoothing of the inferred rotation rate of the Sun. The examples of Jupiter and Saturn,

which are likewise rotating, convecting bodies, suggest that the Sun might possess strong

zonal jets and structured 
ows, in addition to broader variations of di�erential rotation.

Observing for longer periods will enable frequencies to be measured even more accurately,

with consequent improved spatial resolution (41). However, the mean 
ows within the Sun

might not be steady over periods of a year or more, and inverting time-averaged splitting

data will then only provide a picture of the time-averaged dynamics. The analyses of wave
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properties over more localized areas using time-distance or ring-diagram approaches (32),

both of which can be accomplished over shorter intervals in observing time, may serve as

an important complement to the sampling a�orded by the use of the global modes. The

dynamics of the solar convection zone and deeper interior is likely to involve a diverse range

of temporal and spatial scales of behavior (19), the resolution of which will require the

extended imaging data sets that are now becoming available from GONG and associated

helioseismic experiments.
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Fig. 1. Meridional cuts through three rotation kernels for modes with frequencies � �

1500�Hz, for (A) l = 15;m = 8, (B) l = 28;m = 14, (C) l = 28;m = 24. The latitudinal

extent of the kernels varies with m=L, where L =

p

l(l + 1), and the radial extent varies

with �=L. Except close to the deepest point where it has appreciable amplitude, each kernel

is nearly just a product of a function of radius and a function of latitude. (D) Meridional

cut through averaging kernels for a regularized least-squares inversion (as in Fig. 3B), for

target radii and latitudes r = 0:70R, 60

�

and r = 0:82R, 30

�

. The averaging kernels are

symmetric about the equatorial plane, so that they are also peaked at latitudes �60

�

and

�30

�

.
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Fig. 2. Combinations of the �rst three odd splitting coe�cients (20) corresponding to the

equatorial region (upper curve) and latitude 30

�

(lower), plotted as functions of �=L, where

� is frequency and L =

p

l(l + 1). The values are roughly a weighted average of the rotation

at those latitudes, between the surface and the lower turning point radius r

t

(top axis). The

average rotation in the equatorial region is greater than at latitude 30

�

, and also at both

latitudes the rotation initially increases with depth below the surface, before decreasing at

greater depth.
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Fig. 3. The inferred sidereal rotation rate inside the Sun from 4 months of GONG data,

based on (A) an OLA 1 
 1 inversion (23, 26), and (B) an RLS inversion (27). Lighter

shading corresponds to faster rotation; the contour spacing is 10 nHz, the highest contour

value being 460 nHz. [Need to revise to discuss instead the meaning of colors.] The

approximate base of the convection zone is indicated by the dashed line at r = 0:7R. The

slightly more jagged appearance of the RLS solution results from a di�erent balance between

resolution and noise in the two inversions. Particularly noticeable is the local maximum in

the rotation rate a little below the surface in the equatorial region. This shear layer appears

to persist at least to mid-latitudes.
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Fig. 4. Sections at latitudes 0

�

(solid), 30

�

(dashed) and 60

�

(dotted) through (A) the

OLA and (B) the RLS inversion solutions shown in Fig. 3. Also indicated are formal �1

standard deviation error bars (28). Both inversions indicate that surface-like di�erential

rotation persists through the bulk of the convection zone, with a transition near the base of

the convection zone to a 
ow that is consistent with latitudinally-independent rotation.
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Fig. 5. Ring-diagram analysis of the superposition of local acoustic plane waves, each

of which is advected locally by the horizontal component of the mean 
ow beneath the

solar surface. The procedure here uses GONG multi-station data in which a 45

�

subraster

(involving 96

2

pixels and centered on the equator) is tracked at the solar rotation rate over

a 56 hour interval. (A) Multiple rings (corresponding to di�erent values of order n) are

evident in the cut through k

x

� k

y

� � power spectrum at constant frequency � = 3:5 mHz,

where k

x

and k

y

are the eastward and northward components of the horizontal wavenumber.

(B) The displacement of such rings can be used to infer the e�ective mean horizontal velocity

sensed by the acoustic waves over a range of depths (32), shown as the spiralling set of arrows

denoting amplitude and direction of that mean 
ow (in m s

�1

) with proportional radius r=R

just below the surface.
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