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ABSTRACT

Images from the updated GONG network (GONG+)
have been produced since July 2001. In order to
treat individual site images and the merged images
(Toner et al., 2003) for local helioseismology studies,
we have developed an enhanced tracking/remapping
code that is now part of the new GONG pipeline
(GONG++) (Hill et al., 2003). We present here the
data-cube, 3D power spectra and sub-surface ow
maps that will become part of the new GONG++
products and compare the preliminary results with
the ring diagram analysis of MDI images for the same
days.
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1. INTRODUCTION

Ring-diagram analysis of MDI images carried out
over the last few years has led to a break-through
in helioseismic studies which now allow us to ob-
serve the solar sub-surface ows in both azimuthal
and meridional directions and in both solar hemi-
spheres. Using this analysis technique one can study
plasma dynamics around and below surface magnetic
features and their evolution during the solar cycle
or at smaller time scales. It remains unclear how-
ever what the uncertainties and potential bias on
these measurements might be. The new high res-
olution GONG+ observations will allow us to test
these important results with independent datasets.
We present in section 2 and 3 the principal features
of the code developed to perform ring-diagram anal-
ysis of GONG+ images and give in section 4 the �rst
qualitative comparison with MDI data analysis.

2. THE `DATA CUBE'

In order to estimate the mean 3D velocities of an
area over the Sun we need to follow this area over

time. Such a spatio-temporal area is de�ned by an
array (or data-cube) of Nx�Ny �Nt points Mij(tk)
identi�ed by their heliographic latitudes  ij(tk) and
Carrington longitude 'ij(tk) at di�erent times tk. In
order to de�ne such an area completely we need:

1. A reference time t0 and a central positionM0 =
M00(t0) given by  0 =  00(t0) and '0 = '00(t0)

2. A sampling time �t so that tk = t0 + k�t for
k = �Nt=2 + 1::Nt=2

3. The de�nition of a collection of points around
the central position (remapping) and a tracking
rate for following these points in time.�
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4. An interpolator in order to �nd the values of the
Doppler velocities at each point from the image
pixels.

2.1. Remapping: The transverse cylindrical
equidistant projection

For our local analysis, the high degree acoustic waves
are assumed to be plane waves traveling across the
surface of the Sun following geodesics i.e. great cir-
cles. Moreover we are going to use a 3D Fourier
transform for which equidistance is assumed. There-
fore we would like to have a grid on which each hor-
izontal or vertical line is a great circle and where
the distances are preserved in both directions (the
equidistance in time being provided by the constant
image rate �t). In a gnomic projection each straight
line would represent a great circle but the distance
scale is greatly distorted. Unfortunately, no projec-
tion can be made that preserves distance along the
entire extent of the line joining any two points. How-
ever the equidistance can be insured, at least in one
direction, without too much distortion near the cen-
ter of the projection.
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Such a projection can be obtained by placing a point
of the solar surface at the coordinates X =  c,
Y = �=2 � 'c of the remapped area where  c and
'c are respectively the latitude and longitude of that
point in a system where the solar meridian passing
through M0 is the new equator. Since a line of con-
stant longitude is a great circle, all horizontal lines
of the remapped area are great circles and the dis-
tances are preserved along these lines. By noting �x
and �y the angular spacings on the remapped area
and reversing the projection, we obtain:(

 ij(t0) = sin�1 (cosXi sin(Yj +  0))

'ij(t0) = sin�1
�

sinXi

cos ij(t0)

�
+ '0

(1)

where:�
Xi � (i� (Nx + 1)=2)�x i = 1::Nx
Yj � (j � (Ny + 1)=2)�y j = 1::Ny

(2)

We note that the azimuthal equidistant (or Postel)
projection has also been used for ring analysis (e.g.
Bogart et al., 1995). This projection is constructed
by projecting on a plane tangent at M0 whereas the
projection de�ned above and used in Haber et al.
(1995) is a transverse cylindrical equidistant projec-
tion that can be obtained by projecting on a cylin-
der. The Postel projection is equidistant on all lines
passing through M0 but not in X nor in Y (except
for Xi = 0 and Yj = 0). More discussion about the
two projections is given in the Appendix.

2.2. Tracking

The main goal of tracking is to remove as much as
possible the e�ect of the solar rotation which would
otherwise hide the small horizontal and vertical ows
of interest. We consider therefore that the latitude
of a point is �xed in time but its Carrington longi-
tude is changing at a rate that is not necessarily the
Carrington rate and may depend on the latitude. We
use:8<
:

 ij(tk) =  ij(t0)
'ij(tk) = 'ij(t0) + (tk � t0)��


0 �
2 sin
2  0 �
4 sin

4  0 �
c
� (3)

where 
0;
1 and 
2 are adjusted to match the
sideral di�erential rotation of the surface and 
c �
14:1844 deg/day is the sideral Carrington rate. We
note that the tracking is done for all points at the
rate corresponding to the heliographic latitude of the
center of the area. All points lying on a great cir-
cle are therefore still on a great circle after track-
ing. For large areas the di�erential rotation may vary
substantially across the area and therefore one may
consider tracking each point using its heliographic
latitude (i.e.  ij(t0) instead of  0 in Eq. (3)). How-
ever, in the resulting sheared coordinate system, the
Yj =constant lines would no longer describe great
circles and it is probably better to still track the full
area at a mean rate.

2.3. Interpolation

Once we know the heliographic coordinates of the
points of interest we need to look for them on our so-
lar images I(tk). The solar disc is shown on GONG+
merged images as a circle of radius ro pixels. They
are registered so that the Solar north is on top of the
y axis and the east on the left. The coordinates (�; �)
from the lower left corner of the image taken at tk
of the points Mij(tk) are then obtained by doing a
projection at Earth distance. If we note  �  ij(tk)
and ' � 'ij(tk), we obtain:

Mij(tk) = I��(tk) (4)

where:(
���c
ro

= cos sin('� L0)=(1� S�)
���c
ro

= sin cosB0�cos sinB0 cos('�L0)
1�S�

� = sin sinB0 + cos cosB0 cos('� L0)

(5)

The position of the disc center (�c; �c), its helio-
graphic coordinates (L0; B0), the Sun apparent semi-
diameter in radian S and r0 can be found in the FITS
header of each image1.

The values of (�; �) computed from Eq. (5) are in gen-
eral not integers and therefore we need to interpolate
between the images' pixels. We have implemented 3
di�erent interpolators. The `ideal' sinc interpolator
is de�ned in 1D by:

Ix =

Ns�1X
n=�Ns

sin(�(x� n))

2Ns tan
�
�(x�n)
2Ns

�In (6)

where Ns de�nes the length of the interpolator. The
2D interpolation is obtained by applying Eq. (6) suc-
cessively in each direction. This can be seen as a ta-
pered version of the sinc interpolator where the taper
is `ideal' for the Discrete Fourier Transform (DFT)
in the sense that if we were to shift the image by
an arbitrary fraction of a pixel using this interpola-
tor, with Ns equal to the number of pixels in both
directions, the DFT would remain the same except
for a phase di�erence. A similar interpolator (with
a slightly di�erent tapering function) is used during
the merging of individual site images and it is prob-
ably a good idea to keep the same interpolator in
both steps. However, in our current implementation,
the computations needed for this interpolation are
time consuming. This diÆculty can be overcomed
by using a lookup table for the trigonometric quan-
tities resulting in the so-called lookup sinc interpo-
lator which has also been implemented. Finally, we
have also implemented a spline interpolator based on
a tensorial product of B-splines (De Boor, 1978) of
arbitrary order ms. It presents a good frequency re-
sponse even for low order splines and its computation
is based on �nite di�erences which are very easy and
fast to implement.

1Respectively by the keywords: FNDLMBXC, FNDLM-

BYC, L0, B0, SEMIDIAM and C MA
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By plotting the di�erence of the power spectra ob-
tained from spline and sinc interpolator we realized
that di�erences exist which are principally concen-
trated on the rings. These di�erences are however
very small and the relative di�erence is essentially
zero for absolute values of the horizontal wave num-
ber below 1 rad/Mm�1. Therefore it seems that only
the very outer rings could potentially be a�ected by
the choice of the interpolation.

2.4. The `dense pack' of data cubes

In order to study an extended area of the solar sur-
face we process a collection of 189 data cubes cen-
tered at di�erent heliographic latitudes and longi-
tudes ( 0; '0) on the reference image I(t0).�

 0(u; v) = u� 7:5Æ; u = �7::7
'0(u; v)=L0(t0) + v � 7:5Æ; v = �hjuj::hjuj

(7)

where h = [7; 7; 7; 7; 6; 6; 4; 3].

For the present work, we have done three dense-pack
analyses for t0 corresponding to January 2002 11-13
with corresponding L0(t0) = 300Æ; 285Æ; 270Æ respec-
tively. We used the same parameters as in previ-
ous analyses of MDI data (e.g. Haber et al.,2002):
the grid is de�ned by Nx = Ny = 128, �x =
�y = 0:125Æ, Nt = 1664, �t = 1mn; the tracking
rate is given by 
0 = 451:43nHz, 
2 = 54:77nHz,

4 = 80:17nHz and the interpolator chosen is based
on cubic splines (ms = 4).

3. MULTITAPER ANALYSIS, RING FITTING
AND INVERSION

Each data cube is then Fourier transformed via a
3D FFT. This requires �rst a spatial and a temporal
apodization in order to avoid truncation e�ects. We
have chosen a 2D cosine bell apodization in the spa-
tial direction reducing a 16Æ � 16Æ area to a circular
patch of radius 15Æ.

The temporal apodization is carried out using a mul-
titaper technique which �rst multiplies a sequence
of orthogonal sine tapers to the window function,
reorthogonalizes them, applies a temporal FFT to
each tapered time series and then averages the resul-
tant power spectra. Doing so, we avoid the lost of
data that would result from the use of a single taper
and obtain a better distribution of the power along
the rings. Applying too many tapers would result
in an over-smoothed power spectrum and therefore
a trade-o� has to be found. In this work, we used 3
sine multitapers (Fodor & Stark, 1998).

The last steps of the analysis consist in �tting the
rings in the power spectra (see Fig. 1) and invert-
ing the inferred frequency shifts to obtain the depth
dependence of the ow. This has been done using
the code developed for MDI and described in Bogart
et al. (1995).

Figure 1. An example of 3D power spectra showing
the characteristic rings of power distorted by the un-
derlying ows. The two horizontal axis are kx ky
while the vertical axis give the frequencies.

4. FIRST RESULTS: COMPARISON WITH MDI

A study of the errors as a function of depth have
shown that the lowest errors are reached at a depth of
about 1-2Mm. We have therefore chosen this depth
for the �rst comparison between GONG and MDI
ring diagram analysis. The di�erences between the
ows obtained from the two datasets at a depth of
1.18 Mm are shown in Fig. 2. The amplitudes of
the di�erences are clearly a function of the distance
from the center of the disk. They remain small at
the very center but can reach very high relative am-
plitudes at the edges. For the second day, a clear
systematic di�erence in the orientation of the ow is
found. This reects the fact that the GONG ow for
that day has been found with a signi�cant curl. A
problem with the P-angle could produce such appar-
ent rotating ow but we couldn't identify clearly the
source of the problem and why this happened only
for that particular day which had a very good duty
cycle of 91.2%. Clearly this is very preliminary work
using the new GONG+ data product and more in-
vestigations and quantitative analysis are needed to
better understand the systematic errors that may be
present in both GONG and MDI data analysis.
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Figure 2. Di�erence between the ows at a depth of
1.18Mm inferred from GONG and MDI data for 3
consecutive days (January 11-13 2002 from top to
bottom).

APPENDIX: AZIMUTHAL VERSUS
TRANSVERSE CYLINDRICAL

As stated above, the projection used is a transverse
cylindrical equidistant projection (or transverse plate
carr�ee). Cylindrical means that it is constructed by
wrapping a cylinder around the sphere. All great
circles orthogonal to the one tangent to the cylinder
will be remapped as parallel straight lines. It is called
transverse because the tangent great circle chosen is
not the equator but rather the solar meridian pass-
ing through M0. Equidistant means that distance is
preserved along the great circles shown as horizon-
tal lines on the remapped area. Finally we note that
the points are not geometrically projected, in the true
sense of the word, i.e. it is not a perspective projec-
tion.

The azimuthal equidistant or Postel projection is ob-
tained by projecting on a plane tangent to the sphere
at M0 while preserving the distance along the great
circles passing through M0. It is also not a perspec-
tive projection. It is de�ned by: Xp = �p cos'p
and Yp = �p sin'p, where �p and 'p are the colat-
itude and longitude in a system in which M0 is at
the new pole. In this system our cylindrical pro-
jection is de�ned by: X = sin�1(sin �p cos'p) and
Y = tan�1(tan �p sin'p).

One can easily verify that Y=constant is the equa-
tion of a great circle. This also shows that for small
�p (i.e. small areas), the vertical lines also become
close to great circles and our projection becomes sim-
ilar to a Postel projection. For larger areas, however,
the cylindrical projection does a better job in having
the lines parallel to one axis describe great circles,
which may be a desired feature for local plane-wave
analysis, at least along one direction of propagation.
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