Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0 0000000	0000	0	0000		

What to look for in the seismology of solar active regions Surface magnetic effects

Paul Cally

Centre for Stellar & Planetary Astrophysics, Monash University, Australia and

Centre for Plasma Astrophysics, KU Leuven, Belgium

Thanks also to Hannah Schunker (Monash/MPI)

Sept 26 2006, HELAS Workshop, Nice

 Overview
 Mode conversion/transmission

 OO
 O

 OO
 OOOOOOO

Shortened travel times

Directional acoustic filter Wave polarization Conclusions

Outline

Overview

Five major effects Mode conversion/transmission

Numerical experiment Insights from ray conversion theory Shortened travel times Ray insights

Ramp effect

Ramp effect definition Magnetic portals Directional acoustic filter

Basics Wave polarization Conclusions

There are five major effects on a helioseismic wave emerging from beneath a strong magnetic region:

There are five major effects on a helioseismic wave emerging from beneath a strong magnetic region:

1. Mode conversion/transmission (fast-to-slow and vice versa): attack angle α

2. Shortened travel times (for the fast rays)

There are five major effects on a helioseismic wave emerging from beneath a strong magnetic region:

- 2. Shortened travel times (for the fast rays)
- 3. Reduction of acoustic cutoff frequency (ramp effect)

There are five major effects on a helioseismic wave emerging from beneath a strong magnetic region:

- 2. Shortened travel times (for the fast rays)
- 3. Reduction of acoustic cutoff frequency (ramp effect)
- 4. Directional filter on acoustic waves entering atmosphere

There are five major effects on a helioseismic wave emerging from beneath a strong magnetic region:

- 2. Shortened travel times (for the fast rays)
- 3. Reduction of acoustic cutoff frequency (ramp effect)
- 4. Directional filter on acoustic waves entering atmosphere
- 5. Wave polarization and alignment with **B** (Hannah's talk yesterday)

There are five major effects on a helioseismic wave emerging from beneath a strong magnetic region:

1. Mode conversion/transmission (fast-to-slow and vice versa): attack angle α

- 2. Shortened travel times (for the fast rays)
- 3. Reduction of acoustic cutoff frequency (ramp effect)
- 4. Directional filter on acoustic waves entering atmosphere
- 5. Wave polarization and alignment with **B** (Hannah's talk yesterday)

Consider each in turn ...

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
0•	0 0000000	0000	0	0000		

Basic References

Based on Schunker & Cally (2006) and the general ray transmission/conversion theory of Tracy, Kaufman & Brizard (2003).

- Cally, P., Phil Trans Roy Soc A 364, 333 (2006)
- Jefferies, S., McIntosh, S., Armstrong, J., Bogdan, T., Cacciani, A. & Fleck, B., ApJ 648, L151 (2006)
- Schunker, H. & Cally, P., MNRAS 2006 (in press)
- Tracy, E., Kaufman, A. & Brizard, A., Phys Plasmas 10, 2147 (2003)

Mode conversion/transmission: numerical experiment

Acoustic source at 6 Mm depth

• *Transmission* from fast magnetoacoustic wave to slow, or *vice versa* (coefficient *T*); *i.e.*, acoustic-to-acoustic or magnetic-to-magnetic.

- *Transmission* from fast magnetoacoustic wave to slow, or *vice versa* (coefficient *T*); *i.e.*, acoustic-to-acoustic or magnetic-to-magnetic.
- Conversion from predominantly acoustic to magnetic, or vice versa (coefficient C); *i.e.*, fast-to-fast or slow-to-slow.

- *Transmission* from fast magnetoacoustic wave to slow, or *vice versa* (coefficient *T*); *i.e.*, acoustic-to-acoustic or magnetic-to-magnetic.
- Conversion from predominantly acoustic to magnetic, or vice versa (coefficient C); *i.e.*, fast-to-fast or slow-to-slow.
- Occurs at or near the equipartition depth where the sound and Alfvén speeds coincide, c = a [acoustic cutoff shifts it slightly]

- *Transmission* from fast magnetoacoustic wave to slow, or *vice versa* (coefficient *T*); *i.e.*, acoustic-to-acoustic or magnetic-to-magnetic.
- Conversion from predominantly acoustic to magnetic, or vice versa (coefficient C); *i.e.*, fast-to-fast or slow-to-slow.
- Occurs at or near the equipartition depth where the sound and Alfvén speeds coincide, c = a [acoustic cutoff shifts it slightly]
- Transmission coefficient (fast-to-slow or slow-to-fast; $0 \le T \le 1$; T + |C| = 1)

$$T = \exp\left[-\pi K h_s \sin^2 \alpha\right]_{a=c}, \tag{1}$$

where $K = |\mathbf{k}|$ is the wavenumber, α is the attack angle, and $h_s = [d(a^2/c^2)/ds]_{a=c}^{-1}$ is the thickness of the $a \approx c$ layer, and s is arclength along the direction of **k**. [Modified slightly by accustic cutoff, which is ignored in this formula for simplicity]

- *Transmission* from fast magnetoacoustic wave to slow, or *vice versa* (coefficient *T*); *i.e.*, acoustic-to-acoustic or magnetic-to-magnetic.
- Conversion from predominantly acoustic to magnetic, or vice versa (coefficient C); *i.e.*, fast-to-fast or slow-to-slow.
- Occurs at or near the equipartition depth where the sound and Alfvén speeds coincide, c = a [acoustic cutoff shifts it slightly]
- Transmission coefficient (fast-to-slow or slow-to-fast; $0 \le T \le 1$; T + |C| = 1)

$$T = \exp\left[-\pi K h_{\rm s} \sin^2 \alpha\right]_{a=c},\tag{1}$$

where $K = |\mathbf{k}|$ is the wavenumber, α is the attack angle, and $h_s = [d(a^2/c^2)/ds]_{a=c}^{-1}$ is the thickness of the $a \approx c$ layer, and s is arclength along the direction of **k**. [Modified slightly by accustic cutoff, which is ignored in this formula for simplicity]

Overview	Mode conversion/transmission
00	0
	000000

Mode conversion/transmission: $\theta = 30^{\circ}$

Ramp effect Directional acoustic filter Wave polarization Conclusions

B = 2 kG, frequency 5 mHz

Mode conversion/transmission: $\theta = -30^{\circ}$ B = 2 kG, frequency 5 mHz

Mode conversion/transmission: $\theta = 30^{\circ}$ movie

Small attack angle \Rightarrow strong acoustic transmission

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0 0000•00	0000	0	0000		

Mode conversion/transmission: $\theta = -30^{\circ}$ movie

Large attack angle \Rightarrow weak acoustic transmission, strong downward slow leakage

Mode conversion/transmission: $\theta = 0^{\circ}$ movie

Acoustic wave reflected by cutoff. Further conversion on downward path \Rightarrow extra fast branch

Ramp effect Directional acoustic filter Wave polarization Conclusions

Mode conversion/transmission: $\theta = 0^{\circ}$ B = 2 kG, frequency 5 mHz

Overview Mode conversion/transmission Shortened travel times Ramp effect Directional acoustic filter Wave polarization Conclusions 00 0</td

Shortened travel times I

Let's have a look at one of those ray diagrams again, say $\theta = -30^{\circ}$:

Shortened travel times I

Let's have a look at one of those ray diagrams again, say $\theta = -30^{\circ}$:

Focus on the continuing fast ray as it refracts back downward off the Alfvén speed gradient to skip once more. Much faster!

(日)

고는

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

Look at the difference in skip timing (lower turning point to lower turning point) between magnetic and nonmagnetic cases, as a function of frequency:

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

The same but with deeper rays:

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

And now with stronger magnetic field:

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

And now with weaker magnetic field:

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

And now with weaker magnetic field:

Higher frequency rays are greatly speeded up by the magnetic field!

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

Skip distances

Beware: skip distance is different for magnetic and nonmagnetic cases!

10

15

x (Mm)

20

25

-5

0

5

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

Skip distances

Beware: skip distance is different for magnetic and nonmagnetic cases!

Skip distance lengthened by magnetic field by 4–9% in this case (at all frequencies)

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	000000		0			

• Higher frequency rays reach higher into *a* > *c* and so speed up

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

- Higher frequency rays reach higher into *a* > *c* and so speed up
- Lower frequency rays are less affected

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

- Higher frequency rays reach higher into *a* > *c* and so speed up
- Lower frequency rays are less affected
- Transition around 4–4.5 mHz

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

- Higher frequency rays reach higher into *a* > *c* and so speed up
- Lower frequency rays are less affected
- Transition around 4-4.5 mHz
- More gradual at higher B

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

- Higher frequency rays reach higher into *a* > *c* and so speed up
- Lower frequency rays are less affected
- Transition around 4-4.5 mHz
- More gradual at higher B
- Dependence on field inclination θ ; stronger effect at higher inclination

 Acoustic cutoff effect stops *acoustic* waves propagating upwards if ω < ω_c (around 5.2 mHz in photosphere)

- Acoustic cutoff effect stops *acoustic* waves propagating upwards if $\omega < \omega_c$ (around 5.2 mHz in photosphere)
- Ameliorated in *strong* magnetic field by the ramp effect: $\omega < \omega_c \cos \theta$

- Acoustic cutoff effect stops *acoustic* waves propagating upwards if $\omega < \omega_c$ (around 5.2 mHz in photosphere)
- Ameliorated in *strong* magnetic field by the ramp effect: $\omega < \omega_c \cos \theta$
- This allows low frequency acoustic waves to ascend sufficiently inclined magnetic ramps

Directional acoustic filter Wave polarization Conclusions

Magnetic portals

• Jefferies et al (ApJL 648, L151, 2006)

Overview Mode conversion/transmission

Shortened travel times

Ramp effect

Directional acoustic filter Wave polarization Conclusions

Magnetic portals

- Jefferies et al (ApJL 648, L151, 2006)
- Network field at supergranule boundaries is found to allow sub-ω_c acoustic waves into the atmosphere

Magnetic portals

- Jefferies et al (ApJL 648, L151, 2006)
- Network field at supergranule boundaries is found to allow sub-ω_c acoustic waves into the atmosphere
- Magnetoacoustic Portals

Magnetic portals

- Jefferies et al (ApJL 648, L151, 2006)
- Network field at supergranule boundaries is found to allow sub-ω_c acoustic waves into the atmosphere
- Magnetoacoustic Portals
- Postulated to contribute to basal chromospheric heating

Directional acoustic filter

• Ray conversion/transmission theory suggests strong acoustic transmission into the overlying atmosphere only at small attack angle

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0 0000000	0000	0	•000		

Directional acoustic filter

- Ray conversion/transmission theory suggests strong acoustic transmission into the overlying atmosphere only at small attack angle
- Wave mechanical experiment to see if it's true. Place an acoustic driving plane at z=-4 Mm which launches 5 mHz waves with $k_x > 0$ such that the acoustic cavity has natural base at $z_1 = -5$ Mm ($k_x \approx 1.35$ Mm⁻¹). Radiation boundary conditions at top (for fast and slow waves) and bottom (slow wave only). Now monitor the acoustic wave energy flux high in the atmosphere:

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

Directional acoustic filter - experiment

Figure: Acoustic wave energy density as a function of height for $\theta = \pm 30^{\circ}$ for 2 kG field. Full curve: $\theta = 30^{\circ}$; dashed curve: $\theta = -30^{\circ}$. From wave mechanical experiment, not ray theory.

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

Directional acoustic filter - experiment

Figure: Vertical acoustic wave energy flux high in the atmosphere as a function of magnetic field inclination θ for 2 kG field. Full curve: $\theta > 0$; dashed curve: $\theta < 0$. From wave mechanical experiment, not ray theory. The zero flux at low inclination is due to the acoustic cutoff making the slow (acoustic) wave evanescent. The ramp effect opens up the atmosphere to travelling wave penetration once $\cos \theta < \omega/\omega_c$.

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

• Far greater acoustic flux for $\theta > 0$ than for $\theta < 0$

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	0000		
	0000000		0			

- Far greater acoustic flux for $\theta > 0$ than for $\theta < 0$
- Maximum acoustic penetration at $\theta \approx 26^{\circ}$ in this case (less for deeper rays)

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	000●		
	0000000		0			

- Far greater acoustic flux for $\theta > 0$ than for $\theta < 0$
- Maximum acoustic penetration at $\theta \approx 26^\circ$ in this case (less for deeper rays)
- No acoustic penetration for $|\theta| < \cos^{-1}[\omega/\omega_c]$ (ramp effect)

Overview	Mode conversion/transmission	Shortened travel times	Ramp effect	Directional acoustic filter	Wave polarization	Conclusions
00	0	0000	0	000●		
	0000000		0			

- Far greater acoustic flux for $\theta > 0$ than for $\theta < 0$
- Maximum acoustic penetration at $\theta \approx 26^\circ$ in this case (less for deeper rays)
- No acoustic penetration for $|\theta| < \cos^{-1}[\omega/\omega_c]$ (ramp effect)
- As expected from ray theory (attack angle)

Discussed by Hannah Schunker yesterday. Won't say much here except:

Discussed by Hannah Schunker yesterday. Won't say much here except:

• Acoustic (slow) waves become more tightly bound to the field lines as $a^2/c^2 = \frac{6}{5\beta}$ increases

Discussed by Hannah Schunker yesterday. Won't say much here except:

- Acoustic (slow) waves become more tightly bound to the field lines as $a^2/c^2 = \frac{6}{5d}$ increases
- Modelling suggests that at SOHO/MDI heights, this effect is far from complete

Discussed by Hannah Schunker yesterday. Won't say much here except:

- Acoustic (slow) waves become more tightly bound to the field lines as $a^2/c^2 = \frac{6}{53}$ increases
- Modelling suggests that at SOHO/MDI heights, this effect is far from complete
- High resolution simultaneous observations at a variety of heights would be very useful (e.g., Jefferies; more to come from new UK camera?)

Strong surface magnetic field

1. Causes helioseismic waves to split into fast and slow magnetoacoustic branches near the a = c equipartition depth;

- 1. Causes helioseismic waves to split into fast and slow magnetoacoustic branches near the a = c equipartition depth;
- 2. Shortens the skip time of high frequency (\gtrsim 4.5 mHz) fast rays by up to several minutes;

- 1. Causes helioseismic waves to split into fast and slow magnetoacoustic branches near the a = c equipartition depth;
- 2. Shortens the skip time of high frequency (\gtrsim 4.5 mHz) fast rays by up to several minutes;
- 3. Allows even low frequency acoustic waves into the atmosphere if the magnetic field is inclined enough (ramp effect);

- 1. Causes helioseismic waves to split into fast and slow magnetoacoustic branches near the a = c equipartition depth;
- 2. Shortens the skip time of high frequency (\gtrsim 4.5 mHz) fast rays by up to several minutes;
- 3. Allows even low frequency acoustic waves into the atmosphere if the magnetic field is inclined enough (ramp effect);
- 4. Filters acoustic waves entering the overlying atmosphere to preferentially allow through rays nearly parallel to the field;

- 1. Causes helioseismic waves to split into fast and slow magnetoacoustic branches near the a = c equipartition depth;
- 2. Shortens the skip time of high frequency (\gtrsim 4.5 mHz) fast rays by up to several minutes;
- 3. Allows even low frequency acoustic waves into the atmosphere if the magnetic field is inclined enough (ramp effect);
- 4. Filters acoustic waves entering the overlying atmosphere to preferentially allow through rays nearly parallel to the field;
- 5. Causes the oscillations high in the atmosphere to become progressively more field aligned.

Strong surface magnetic field

- 1. Causes helioseismic waves to split into fast and slow magnetoacoustic branches near the a = c equipartition depth;
- 2. Shortens the skip time of high frequency (\gtrsim 4.5 mHz) fast rays by up to several minutes;
- 3. Allows even low frequency acoustic waves into the atmosphere if the magnetic field is inclined enough (ramp effect);
- 4. Filters acoustic waves entering the overlying atmosphere to preferentially allow through rays nearly parallel to the field;
- 5. Causes the oscillations high in the atmosphere to become progressively more field aligned.

THE END

Overview	Mode conversion/transmission
00	0
	0000000

Ramp effect Directional acoustic filter Wave polarization Conclusions

See you in Melbourne

- 문 (도

Brunt-Väisälä and Cutoff frequencies

문 돈

・ロト ・回ト ・ヨト ・ヨ