Analysing the Meridional Circulation using Fourier-Hankel-Decomposition

L. Krieger, M. Roth, O. v.d. Lühe

Kiepenheuer-Institut für Sonnenphysik Freiburg im Breisgau

25th September 2006

< ロ > < 同 > < 三 > < 三 >

nac

FHD	Application to observations	Results	Conclusions and Ideas
-			
Content			

FHD	Application to observations	Results	Conclusions and Ideas
Outline			

2 Application to observations

3 Results

<ロ> < (四) < (0) < (0) </p>

nac

Reduction of observed data with the FHD

Partition of the residual Doppler-Signal Ψ

Spectra

Frequency-spectra $A_{L,m,\nu}$ and $B_{L,m,\nu}$ by integration over θ, φ, t

SQ C

Shift between the spectra $A_{L,m,\nu}$ and $B_{L,m,\nu}$

Figure: Example for a peak in the spectra of pole- and equatorward flow.

Figure: Example for smoothed peak, showing a frequency-shift between both spectra.

< 🗆

Estimation of the velocity-profile

Assumption

The value $(U/r)_{n,L}$ is constant over the range spanned by the penetration-depth of the mode (n,L) !

Estimation

$$\Delta \nu_{n,L} = \frac{I \int_{0}^{R_{\odot}} \rho_0 \left(\frac{U}{r}\right)_{n,L} \cdot K_{n,L,m}(r) dr}{\pi \int_{0}^{R_{\odot}} \rho_0 \cdot K_{n,L}(r) dr} = \frac{I}{\pi} \frac{U(R_{\odot})}{R_{\odot}}$$
$$U(R_{\odot}) = \pi R_{\odot}/I \cdot \Delta \nu_{n,L} =: U'$$

() < </p>

nac

Estimation of the velocity-profile

Estimation

- Obtain set of points $\{(\nu_i/L_i, U'_i)\}$
- Find relation: "penetration-depth" $\epsilon \leftrightarrow \nu/L$
- Resulting in velocity profile $U'(\epsilon)$

FHD	Application to observations	Results	Conclusions and Ideas
Outline			
O definito			

2 Application to observations

3 Results

FHD	Application to observations	Results	Conclusions and Ideas	
Dat	ta			
0	Dopplergrams of SOI/MDI	(SOHO)		
•	Full-disk-images – from 01	.04.99 to 30.04.99		
•	Transformed to equidistant	$\theta - \varphi$ -lattice		

() < </p>

Sac

Parameters for integration

- m=0
- $L = 13 + 2 \cdot j$, $j \in \{0, \dots, 504\}$
- Resolution in ν : 0.4 μ Hz
- Interval of the polar angle $\Theta = \pi/4$

FHD	Application to observations	Results	Conclusions and Ideas
Outline			
Catillo			

2 Application to observations

Velocity profile over ν/L

Northern hemisphere, binned velocity profile over ν/L

Southern hemisphere, binned velocity profile over ν/L

< 🗆

Velocity profile over ν/L : comparison with known results

Northern hemisphere, velocity over ν/L , comparable part

Results of D. Braun 1999, velocity over ν/L , northern hemisphere

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Velocity profile over depth: comparison with known results

Northern hemisphere, velocity over penetration depth ϵ , comparable part with ϵ from 0 to 20 Mm, average velocity of (15 ± 5) m/s

According to eg.(Zhao, Kosovichev, Duvall – 2004) the velocity of the poleward-flow in the region of $\theta \approx 45^{\circ}$ is (10 - 15) m/s. This velocity is constant in the range of depth of around 14 Mm.

Velocity profile over depth - extended to 170 Mm

Northern hemisphere, velocity over ν/L

Southern hemisphere, velocity over ν/L

< 🗆

• •

Conclusions and Ideas

990

Profile over depth - average profile

FHD	Application to observations	Results	Conclusions and Ideas
Outline			

2 Application to observations

3 Results

<ロ> < (四) < (0) < (0) </p>

nac

Conclusions

What did we get?

- Rough estimation for the quality of the profile
- Agreement with known results in shallow layers
- Agreement with known results by same method in middle-deep layers
- Indications for return flow in layers of around 130 Mm depth

() < </p>

nac

Ideas

How to improve?

- Longer time-series for better resolution
- Integration over bigger set of data (esp. $m \neq 0$)
- Variation of θ
- Time-varying survey
- Better detection of peaks in the frequency-spectra, increasing the number of $\Delta \nu_i$

Conclusions and Ideas

500

Dopplergrams – original and transformed

Figure: Example for an original dopplergram.

Figure: Reduced example-dopplergram on θ - φ -lattice.

< 口 > < 同 >

EUN	

Spektra – total

<ロ> < 四> < 回> < 回> < 回> < 回> < 回> < 回>

500

L-*v*-diagrams

Hankel-approximation

Hankel

- Idea: take Hankel $H_m^{(1,2)}(L\theta)$ as solution of radial oscillation ODE
- Approximation for $l \gg 1$ and $l \gg m$ (far-field-approx.)

$$H_m^{(1,2)}(L\theta) \approx (-1)^m \frac{(I-m)!}{(I+m)!} \left[\mathsf{P}_I^m(\cos\theta) \pm \frac{2i}{\pi} \mathsf{Q}_I^m(\cos\theta) \right]$$

FHD	Application to observations	Results	Conclusions and Ideas
Hankel1			

FHD	Application to observations	Results	Conclusions and Ideas
Hankel2			
1.0 			

